ALLERGIC RHINITIS — ANALYSIS OF SKIN TESTING IN 774 PATIENTS

IMRAN GURBACHAN
HAMIMAH IDRUSS

SUMMARY

This study shows that out of 774 patients tested, the house dust mite (Dermatophagoides pteronyssinus) provoked the maximum response (51.81%) the house dust was second (42.81%), and shrimp was third (23.92%). The moderate allergenic extracts were cat fur (12.79%), dog fur (10.72%), cockroach (8.47%) egg white (7.56%) and orris powder (6.30%). Among the low allergenic extracts were Aspergillus fumigatus (5.38%), Staphylococcus aureus (3.53%) and chicken feathers (3.18%).

The authors are of the opinion that the skin sensitivity test is an important diagnostic tool in allergic rhinitis and since this is a preliminary study any short listing of allergens to be used is not recommended yet.

Skin sensitivity tests is a useful tool for differentiating allergic rhinitis from vasomotor rhinitis. Estimation of allergen specific IgE concentration in the serum will not offer any major advantages over the intradermal skin test in determining the clinical significance of house dust mite allergy. The development of local materials for skin testing may enhance the usefulness of these investigations.

INTRODUCTION

Perennial rhinitis is a common condition both in ENT as well as in general practice. An analysis in an ENT Clinic in Kuala Lumpur by Tan showed that of 100 consecutive patients 34% percent had perennial rhinitis. Four percent of patients attending a general practice in Kuala Lumpur had the same ailment during the same period. Perennial rhinitis is characterised by rhinorrhea, paroxysmal sneezing and nasal obstruction or a combination of these symptoms. Niels Mygind has classified rhinitis as purulent and non purulent. The latter consists of 3 types which include a) allergic rhinitis which gives a positive skin test to an allergen and an increase in nasal eosinophilia, b) cholinergic rhinitis (also known as vasomotor rhinitis) which gives a negative skin test. Nasal eosinophilia and nasal polyps are absent and c) intrinsic rhinitis characterised by negative skin tests, nasal eosinophilia and the presence of nasal polyps.

Seasonal allergic rhinitis or Hay Fever is present in temperate countries and is uncommon in the tropics. Although these 3 entities can be differentiated by clinical and haematological methods it is rather difficult to draw a line dividing them clinically.

The objective of this study is to evaluate the prevalence of allergic rhinitis amongst patients who presented with the above symptoms at the ENT clinic of Universiti Kebangsaan Malaysia, Kuala Lumpur. Reports on the pattern of skin sensitivity tests to various allergens in Malaysia are lacking although skin tests are carried out in various centres in the country.

It is useful to know the pattern of skin positivity
to the locally available commercial extracts. In cases where the allergen is not found in this country or, if it is a 'variant' compared to the local allergen, then it would facilitate allergists in the right choice of allergens in skin testing. This would avoid wastage of using allergens which are non-existent under local conditions.

Skin testing is a simple, fast and relatively safe procedure. In spite of the false positive and false negative results it can help allergists elucidate whether there is an underlying allergic factor. Though the confirmative diagnosis of allergic rhinitis can only be made after considering the absolute blood eosinophilia count, increase in eosinophils in nasal secretions, increase in blood IgE levels and skin hypersensitivity reaction, the skin prick test offers a simple and fast screening procedure.

A regional report on skin sensitivity tests by P.C. Teoh showed that out of 54 unselected adult asthmatics, the highest positive skin reaction was to Dermatophagoides pteronyssinus (65 percent) and house dust (52 percent). The other allergens used were Aspergillus fumigatus which evoked a 5.5 percent positive skin reaction, cat fur (3 percent) dog hair (3 percent) and whole egg (0 percent). Seven other allergens used did not evoke any skin reaction.

MATERIALS AND METHODS

Patients

Seven hundred and seventy-four patients attending the ENT Clinic at University Kebangsaan Malaysia at the General Hospital Kuala Lumpur from January 1981 to December 1982 with symptoms of perennial rhinitis such as rhinorrhea, paroxysmal sneezing and nasal obstruction were tested for skin sensitivity to various allergens.

The mean age of the patients was 35 years and none of them had been hyposensitised to any allergen. The clinical history was recorded by means of a detailed questionnaire which was completed by a technician and checked by the examining physician.

The Skin Test

All solutions of allergens were from Bencard, England. The 14 allergens selected were on the basis of their likely presence common in the local environment. Prior to skin testing subjects were instructed to refrain from any anti-histamine for 48 hours.

The prick test, being superior to the intradermal test was used throughout. The volar aspect of the forearm was chosen. Sites were marked out with a washable marker at distances of 2 cm apart in two longitudinal rows 2 cm across. A drop of the test agent was applied to the skin and a special lancet was used to depress the skin to just enter it and then lifted without drawing blood. Readings of the size of the weal and flare were taken 15 minutes later. The patients were observed for at least an hour from the time of the test to detect any untoward side effect. A positive reading is made when the weal size is more than 2 mm above control. The flare was disregarded because of the difficulty in assessing its extent in pigmented skin.

RESULTS

Of the 774 patients there were 422 Malays, 221 Chinese, 111 Indians and 20 'miscellaneous' in the ethnic breakdown.

It was found that Dermatophagoides pteronyssinus gave the highest positive reaction (51.81 percent) in the subjects; followed by the house dust (42.81 percent) and shrimp (23.92 percent); (see Table I). The allergens in the moderate allergenic group are egg whole (17.77 percent), crab (16.13 percent), B2 pollen (15.92 percent) cat fur (12.79 percent) and dog fur (10.72 percent). Low allergenicity was seen with cockroach (8.47 percent), egg white (7.56 percent), orris powder (6.30 percent), Aspergillus fumigatus (5.38 percent), Staphylococcus aureus (3.53 percent) and chicken feathers (3.18 percent).

Table II shows the results of the skin prick sensitivity tests using 9 allergens for the year 1981/1982. Table III shows another 6 allergens, 3 of which were used in 1981 but were dropped in 1982 because of low allergenicity and another 3 allergens added in 1981.

Since some patients elicit more than + 1 mm weal size to the 'control' solution, calculations of the absolute number of patients being positive to a particular allergen was obtained by subtracting from the total number of patients having 2 mm or more (2 + X) mm weal sizes the number of patients having a reaction of more than 2 mm or (2 + X) mm weal sizes to the 'control' solution.

Results from Table I & II show that Dermatophagoides pteronyssinus not only provoked the highest positive reaction amongst the subjects
TABLE I
THE SEVERITY IN ALLERGENECITY TO VARIOUS ALLERGENS IN DESCENDING ORDER

<table>
<thead>
<tr>
<th>Degree of allergenecity</th>
<th>Allergen</th>
<th>Number of positive patients</th>
<th>Percentage positivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Dermatophagoides pteronyssinus</td>
<td>401</td>
<td>51.81</td>
</tr>
<tr>
<td></td>
<td>House Dust</td>
<td>527</td>
<td>42.81</td>
</tr>
<tr>
<td></td>
<td>Shrimp</td>
<td>178</td>
<td>23.92</td>
</tr>
<tr>
<td>Moderate</td>
<td>*Egg (whole)</td>
<td>67</td>
<td>17.77</td>
</tr>
<tr>
<td></td>
<td>Crab</td>
<td>120</td>
<td>16.13</td>
</tr>
<tr>
<td></td>
<td>*Group B2 pollen</td>
<td>60</td>
<td>15.92</td>
</tr>
<tr>
<td></td>
<td>Cat fur</td>
<td>99</td>
<td>12.79</td>
</tr>
<tr>
<td></td>
<td>Dog fur</td>
<td>85</td>
<td>10.72</td>
</tr>
<tr>
<td>Low</td>
<td>Cockroach</td>
<td>63</td>
<td>8.47</td>
</tr>
<tr>
<td></td>
<td>*Egg (white)</td>
<td>30</td>
<td>7.56</td>
</tr>
<tr>
<td></td>
<td>Orris powder</td>
<td>25</td>
<td>6.30</td>
</tr>
<tr>
<td></td>
<td>*Staph aureus</td>
<td>14</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>*Chicken feathers</td>
<td>12</td>
<td>3.18</td>
</tr>
</tbody>
</table>

*Denotes testing done in only one year ie. either 1981 or 1982.

Total number of patients tested 774.

but also the highest variation in the weal sizes; ie. from 1 mm to more than 12 mm. The largest weal size recorded for this allergen was 21 mm and this was found in 3 subjects.

The house dust allergen which ranks second in the skin prick test in producing a positive skin reaction also shows a wide variation in the weal size: ie. from 1 mm to 9 mm. The other allergens produce in a decreasing order the degree of weal size according to the positivity of the skin reaction. The least allergenic substance chicken feathers showed the smallest variation in weal size, ie. from 1 mm to 4 mm.

DISCUSSION

The findings of this study are consistent with regional reports which incriminate the house dust mite in allergic rhinitis in Malaysia \(^5\) in Indonesian children, \(^6\) and in bronchial asthma in Singapore. \(^5\)

The importance of allergy to domestic mites was first described by Dekker \(^7\) but the allergic importance of domestic mites in house dust has been investigated by Voorhorst \(^8\) and Oshima \(^9\) in 1964. Their results have been confirmed by many other workers. \(^10\) All agree that the most probable source of allergen in the house dust is the mite, Dermatophagoides pteronyssinus.

Work done by Furumizo \(^11\) on the mite fauna of house dust samples from Petaling Jaya showed that Dermatophagoides pteronyssinus was common in the house dust samples collected from the houses of patients who were allergic to house dust mite Thomas \(^5\) showed a high incidence (83.7%) of positive skin reactions with extracts of mites among individuals of a group of rhinitis patients from around Kuala Lumpur who were clinically sensitive.
to house dust. In the same study she showed that in a second group of patients with rhinitis but with or without clinical sensitivity to dust, 57.7 percent were positive to house dust mite extract.

Most people are allergic to one kind of seafood or another. In this study we found that 23.92 percent of our subjects were allergic to the shrimp extract. Whole egg appeared to be more allergenic (17.7 percent) than egg white (7.56 percent) because it contains more varieties of proteins and amino acids than egg white.

Cat fur and dog fur produced a 12.77 percent and 10.72 percent skin positivity reaction respectively and this is quite consistent with the finding of Holopainen 12 who found that animal danders were responsible for 13 - 18 percent of allergic rhinitis in Scandinavian countries.

The cockroach allergen belong to the low allergenic group in our study. However there are a few reports which show it as an important cause of asthma. In the Durban area where the house dust mite was the main offender, 9 out of 30 patients showed a significant reaction to cockroach antigen. 13 This is further supported by a report suggesting that the cockroach antigen may be as important as the mite in house dust allergy in the Kansas City population. 14

Only 5.38 percent of our patients showed a positive reaction to Aspergillus fumigatus. The other allergens which showed a relatively low positive skin reaction are to those of Staphylococcus aureus (3.53 percent) and chicken feathers (3.18 percent).

Although 14 allergens were used only about 10 gave a positive response of noticeable frequency. This is an important finding with respect to future skin testing. The 'low' allergenic extracts can be omitted and other more incriminating allergens used.

From Table II & III it is found that almost all the skin reactions to the 14 allergens show a unimodal distribution in terms of weal sizes. This is important since some commercial extracts such as pollens have been shown to have a bimodal skin reaction pattern because of the presence of more than one allergen in a given extract. 15

The allergen extracts used are commercially prepared from the temperate countries. The materials used are different from the local scene; e.g. the heterogenous composition of house dust make it difficult to determine the potent allergenic factor. 12 House dust varies not only from country to country but also from house to house. To date house dust extract is being produced by at least four manufacturers.

As a rule allergen extracts lack proper immunochemical standardization and they may be weak or varying in their allergen contents. For any given allergen the extract not only contains varying amounts of allergen from batch to batch but also from bottle to bottle.

Hillas 16 showed that there is a variation in potency of allergens supplied by 3 commercial suppliers. In this study, 18 subjects with clinical sensitivity to house dust had positive reactions to only 2 of the house dust mite extracts and no reaction to the third. This is further supported by Tovey 17 who showed that in 4 commercially

--

TABLE III
RESULT OF SKIN PRICK SENSITIVITY TEST FOR 'OTHER' ALLERGENS FOR 1981 or 1982

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>> 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>252</td>
<td>5</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg (whole)</td>
<td>272</td>
<td>19</td>
<td>39</td>
<td>36</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group B2 polien</td>
<td>279</td>
<td>19</td>
<td>29</td>
<td>31</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chicken feathers</td>
<td>321</td>
<td>25</td>
<td>19</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orris Powder</td>
<td>265</td>
<td>49</td>
<td>47</td>
<td>23</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>282</td>
<td>55</td>
<td>37</td>
<td>20</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staph aureaus</td>
<td>294</td>
<td>32</td>
<td>41</td>
<td>26</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg (white)</td>
<td></td>
</tr>
</tbody>
</table>
prepared extracts and one laboratory prepared extract, the quantity of allergen varies from 1.5, 52, 108, 265 and 581 arbitrary allergen/ml using the direct binding assay.

There is also the question of false negative skin prick test results. Patients with allergic rhinitis who had a clinical history of house dust mite allergy but negative skin tests with Dermatophagoides pteronyssinus were shown not to have specific IgE antibodies in their serum but had specific antibodies in their nasal secretions. Another factor which plays an important role in skin sensitivity tests is that sexes react differently to a given allergen. 708 adolescents in Finland were skin tested by using 12 common allergens from 2 manufacturers and the results showed that the boys were more reactive than girls. 5

There is a trend to shortlist the number of allergens in skin tests. One allergist is of the opinion that only 4 extracts need be used, i.e. house dust, house dust mite (D. farinae), grass pollens and a control. Van Asperen from Australia concludes that only 3 allergens need be used i.e. Dermatophagoides pteronyssinus, cat fur and rye grass. In our study the 3 important allergens were Dermatophagoides pteronyssinus, house dust and shrimp but since this is a preliminary study we do not recommended any such shortlisting yet.

ACKNOWLEDGEMENT

The authors wish to thank the Dean of the Faculty of Medicine University Kebangsaan Malaysia Professor Datuk Haji Abdul Hamid Haji Abdul Rahman for his permission to publish this paper, Miss Hooi Pooi Peng for her dedication to this project and Puan Wirda Hassan for typing this manuscript.

REFERENCES

3 Teob P C, Tan W C, Oon C J, Lui K F. Prick skin test in bronchial asthma & their correlation with the specific serum IgE levels. Sing Med J. 1977, 18, 4.

7 Dekker H. Asthma and milben: Muchener Med Wochensch 1928, 12, 515.

9 Oshima S. Observations of floor mites collected in Yokohama. I. On the mites found in several schools in summer Jap J Sanit Zool 1964, 15, 235-44.

14 Hulett A C, Dockhorn R J. House dust mite (D. farinae) and cockroach allergy in a Mid Western population. Ann Allergy, 1979, 42(3), 160-5.

17 Tovey E, Vandenberg R. Mite allergen content in commercial extracts and in bed dust determined by radio-allergosorbent test. Clin Allergy 1979, 9(3), 255-62.

