Quality of Life of the Malaysian General Population: Results from a Postal Survey Using the SF-36

A B Azman, PhD*, S Sararaks, MPH*, B Rugayah, MPH** L L Low, B.Sc (Hons.) ${ }^{* * *}$, A A Azian, MPH*** S Geeta, MBBS ${ }^{* * * *}$, C T Tiew, B.Sc (Hons.) ${ }^{* * * * *}$
*Public Health Specialist; Institute of Public Health, 50590 Kuala Lumpur, **Public Health Specialist, Clinical Research Centre, Hospital Kuala Lumpur, 50586 Kuala Lumpur, ***Research Officer, Institute of Public Health, 50590 Kuala Lumpur, ${ }^{* * * * M e d i c a l ~}$ Officer, Institute of Public Health, 50590 Kuala Lumpur, ${ }^{* * * * * S e n i o r ~ S t a t i s t i c i a n, ~ I n s t i t u t e ~ o f ~ P u b l i c ~ H e a l t h, ~} 50590$ Kuala Lumpur

Summary

Population nomins for Health Related Quality Of Life using sF -36 ate described: A national sample was canvassed in 2000 using a self-administered Sf-36in Bahasa Malaysia and English. Response rate was 30.6% wilh 3072 usable data: Male Female ratio was i:04 and mean age was 398 yeats: Quality of life was affected by age and sex: Older population and women had a poorer quality of life. Population norms for Malay sia differed from those of US, Canada and Austalia: The Malaysian general population norn described is iseful as reference point for studies in Malaysia Variability in seores by age and sex enphasize the need to use appropriate age-tor sex-speeffie normative cata:

Key. Words:: Healthrelated quality of life, SF-36

Introduction

Quality of life (QOL) emerged from sociology and social psychology as a global concept encompassing aspects of physical, social, emotional and spiritual wellbeing. Defined in terms of cultural standards and norms, it has reference to the desires, needs, experiences and aspirations of the individual. When considered as a dimension or domain of quality of life, health is best thought of in the narrower sense of factors that are generally considered to fall under the purview of health care providers, or that are likely to be the target of a health care intervention. Thus, the term "Health-related quality of life (HRQOL)" has sometimes been preferred to that of $\mathrm{QOL}^{1,2}$ and this can be defined as an individual's satisfaction or happiness with domains of life as far as they affect or are affected by health. It can be differentiated from QOL in that HRQOL concerns itself primarily with those factors that
fall under the purview of health care providers and health care systems ${ }^{3}$.

Instruments used in the measurements of both individual and population HRQOL are either generic, i.e. not specifically designed for patients with a particular disease or condition, or, they may be specific for a particular disease or condition but not applicable to the general population. We had chosen to use the SF-36 (Short form - 36), a generic outcome measure of sickness ${ }^{4}$. It is based on 36 -items selected to represent eight health concepts (physical, social and role functioning, mental health, health perceptions, energy, fatigue, pain and general health $)^{4}$. and shown to be a sensitive measure for numerous diseases, thus its use in the measurement of outcome of care ${ }^{4.5}$. In addition, it has been found to be sensitive to changes in health in general populations ${ }^{67}$. The developers have also

[^0]methodically documented the validity and reliability of this instrument ${ }^{8,9,10,11}$.

One of the many applications of HRQOL research is in making empirical statements concerning community life, urban development and social progress. This information will be of relevance to policy makers and health planners to improve the health services. However, in order to make the correct inferences in relation to the population being studied, a reference point will be needed as a yardstick for comparison.

Normative data are the key to determining whether a group or an individual scores below or above the average for their country, age or sex ${ }^{4,12}$. Although there already exists published norms for the United States ${ }^{4}$, the Queensland region and Australian Capital Territory of Australia ${ }^{7,13}$, the United Kingdom ${ }^{14}$ and Canada ${ }^{12}$, comparable norms do not yet exist for Malaysia. In a recent study done locally, norms for the US general population were used as a guide for reflecting deficits in the various domains because of disease, i.e. comparing the general population functioning with that of the diseased population ${ }^{15}$. Given the cultural and ethnic differences, not to mention the genetic differences, it is expected that the perceived HRQOL of the general population in Malaysia might differ from that of the general population of other countries.

Here, we present the population norms for Malaysia for SF-36 by age, sex and ethnicity.

Material and Methods

A nationwide household survey was conducted throughout Malaysia with respondents who were randomly selected from living quarters sampled for the Third Round of the Labour Force Survey\# in 2000. A multistage stratified (by state and urban/rural location) random sampling was done, proportionate to
population size@. The sampling design excluded this institutionalised population that constituted less than $3 \%{ }^{16}$.

In total, 1,746 Enumeration Blocks* (EBs) were canvassed. Within each EB, six questionnaires were randomly given to three living quarters. A living quarters** (LQ) in the EB. Respondents must be Malaysians, aged 18 years and above and literate in either Bahasa Malaysia (BM) or English.

The enumerators for the Third Round of the Labour Force survey handed survey materials consisting of an introductory letter with accompanying explanation on the study, a bilingual questionnaire and a stamped return envelope to respondents by hand, in efforts to increase response rates. Enumerators explained to respondents that their responses were important to the Ministry of Health, and that all answers would be kept confidential. Respondents were advised to fill the questionnaires and subsequently post them back to the researchers as soon as possible. Response by proxy was not entertained.

The UK version of SF- 36 had been translated to Bahasa Malaysia by a group of researchers from University of Science Malaysia\#\#. A research team under the aegisof International Quality of Life Assessment (IQOLA) Project had developed a translated version. We have adapted and modified that translated version of SF-36. In-depth interviews were conducted for cognitive debriefing on patients and their families attending government Medical Outpatients Clinics, with quota sampling to cover diverse ethnic groups. We explored their perception, understanding and interpretation of translated items of SF-36 (BM version). Results of the cognitive debriefing were used to refine the translated BM SF-36 questionnaire further and this was used in the survey. In the process of printing, typological errors were noted in the questionnaire for questions 6 and 8 which could affect the accuracy of responses for social
\# The Labour Force Survey is a survey conducted by the Department of Statistics, mainly to measure the employment status in the country. The sample selected for the survey is spread over quarterly rounds, in this case, the third quarter of 2000.
(13) First stage of the sampling involved the selection of Enumeration Blocks (EB); while in the second stage of sampling living quarters** (LQ) were selected.

* An enumeration block is an artificially created contiguous geographical area with specific boundaries (either natural or artificial) that do not straddle administrative boundaries. On average, an EB covers about 100-120 living quarters.
** A living quarters (LQ) is a living unit, structurally separate (surrounded by walls, fences etc. and is covered by a mof) and independent (has direct access via a public staircase, communal passages or landing) and are meant for living.
\#\# A research team under the aegis of International Quality of Life Assessment (IQOLA) Project had developed a translated version.
functioning (SF) and bodily pain (BP) subscales. Question 6 had one response category left out ("moderately") while question 8 had six response categories instead of the specified five. Independent raters gave levels/scores for each response category to identify which categories should be grouped together to reduce the number of response categories from 6 to 5. "Mild" and "very mild" were combined together to form one category.

Calculation of scores for all the eight domains\#\# followed that outlined by Ware et a^{4}.

Data collection was carried out simultaneously throughout the country in September 2000. The researchers received questionnaires in the mail until 31 December 2000.

Results

Out of 10,041 questionnaires sent out, 3072 returned in a usable form. Response rate was 30.6%.

The male to female ratio was 1.04 . Mean age was 39.8 $\pm 12.9 \#$; median was 39.4 and age in the sample ranged from 18 to 87 years. The majority were Malays (77.2%), followed by Chinese (16.4%). More than half (60.0%) of the sample was from urban areas.

Half (54.1\%) of respondents had secondary level education, with 27.3% with primary education. 61.8% were employed, and the reported average monthly income was RM1065 $\pm 1224^{*}$, with a median of RM781 and a range of RM20 to RM20,000. Two thirds (77.6\%) of the sample owned some form of transport, commonly a motorcycle or a car; whilst half (55.5\%) owned the house they were staying in at the time of survey. Almost all (94.7\%) reported to be staying with their family, with only 2.4% staying on their own, and 2.9\% with friends.

On self-reported morbidity, 26.0% reported some type
of disease, and 2.7% some form of handicap, commonest being complaint pertaining to the respiratory tract and musculoskeletal disorders.

Table I shows the characteristics of respondents compared to the Malaysian population in 2000^{16}. Urban dwellers, young males, Chinese and other ethnicity were under-represented.

Tables II to VI show the means, summarised percentile proportions together with floor@ and ceiling** effects for all the 8 domains by age, sex, ethnicity and by age by sex.

Females had lower means for all domains compared to males, with the difference significant for PF, BP, VT, REE and MH. This picture is consistent, even after stratifying by age.

As expected, increasing age was associated with a reduction in mean PF for both gender, while mean REP, BP, VT and SF dropped from 60 years and above, and mean GH dropped a decade earlier, from 50 years onwards. REE and MH showed no obvious pattern with age, though young adults less than 30 years had lower means for both the domains.

Indians have lower means for PF, BP, VT, SF and MH compared to other ethnic groups, though the difference were not significant. Other Bumiputera had lower means only for BP , the level for which was similar to that of Indians.

In general, ceiling effects were seen for PF, REP, SF and REE. Older population greater than 60 years had minimal ceiling effects for PF, as expected. Floor effects were not much of a problem except for REE. Figures 1 to 3 show the variability of the subscales by age, gender and ethnicity. Each of the subscales demonstrates a similar distribution for gender and ethnicity. PF shows greater variability with increasing age. BP, GH, VT and MH do not show much difference
\#\# Also referred to as subscales4. They are: physical functioning (PF), social functioning (SF), physical role functioning (REP), emotional role functioning (REE), mental health (MH), energy fatigue/vitality (VT), bodily pain (BP) and general health (GH).
\# This is one standard deviation. 95% confidence limits for the mean were 39.4, 40.3 years.

* This is one standard deviation. 95% confidence limits for the mean were RM1009.8, 1120.3.
(a) Proportions of subjects receiving the maximum possible score.
** Proportions of subjects receiving the minimum possible score.
in distribution of scores across age, with all ages demonstrating minimal floor and ceiling effects.

Figure 4 compares the Malaysian average\# with that for the general population of United States (US) ${ }^{4}$, the Australian Capital Territory (ACT) ${ }^{7}$ and Canada ${ }^{12}$. PF and VT for Malaysians were higher than the average scores for the general population of US, though it was similar to that for Canadians. Malaysians had the lowest scores for BP and GH, significantly lower than the other
countries'. SF, REE and MH, though comparable to the normative data for US, were lower than that for Canada (for the three subscales), and the ACT (for the last two subscales). Only REP was found to be similar across all the countries compared. Although the confidence intervals do not overlap, the differences mentioned are small, with only VT, BP and GH with a gap of 5 or more points, the level considered to be clinically and socially meaningful ${ }^{17}$.
\# Mean score with 95% confidence limits.

Table I: Comparison of characteristics of respondents with Malaysian Population (Census 2000)

Characteristics		Respondents		Population	Test of proportions p value
		Number	\%	\%	
Area	Urban	1832	60.0	62.0	0.04
($\mathrm{n}=3055$)	Rural	1223	40.0	38.0	0.08
Sex	Male	1563	51.1	51.0	0.48
($\mathrm{n}=3061$)	Female	1498	48.9	49.0	0.48
Age group - All Males ($\mathrm{n}=1543$)	18-29 years	262	17.0	29.0	0.03
	30-39 years	421	27.3	26.0	0.10
	40-49 years	429	27.8	21.2	0.01
	50-59 years	260	16.9	12.7	0.37
	60-69 years	128	8.3	7.0	0.45
	> 70 years	43	2.8	4.0	0.39
Age group -All Females$(n=1479)$	18-29 years	445	30.1	29.3	0.01
	30-39 years	455	30.8	26.3	0.09
	40-49 years	347	23.5	20.4	0.02
	50-59 years	150	10.1	11.8	0.42
	60-69 years	64	4.3	7.4	0.51
	> 70 years	18	1.2	4.8	0.57
Ethnic Group$\text { (} \mathrm{n}=3072 \text {) }$	Bumiputeraa	2373	77.2	65.1	0.000
	Chinese	505	16.4	26.0	0.000
	Indian	165	5.4	7.7	0.17
	Others	29	0.9	1.2	0.001

Table II: Norms for the General Malaysian Population, Total Sample

Total Sample ($\mathbf{N}=\mathbf{3 0 7 2)}$	PF	REP	BP	GH	VT	SF	REE	MH
Mean	85.98	82.03	69.96	66.74	66.79	83.73	79.23	74.66
25th Percentile	80.00	75.00	62.00	52.00	55.00	75.00	66.67	64.00
50th Percentile (Median)	95.00	100.00	72.00	67.00	70.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	17.91	32.12	17.59	19.99	17.68	19.28	35.92	17.19
Range	100.00	100.00	90.00	100.00	100.00	100.00	100.00	100.00
\% Ceiling	32.3	70.4	0	2.4	4.0	43.2	71.3	9.2
\% Floor	0.2	80.2	0.3	0.3	0.1	0.2	12.7	0.0
Valid N	$\mathrm{N}=3072$	$\mathrm{~N}=3064$	$\mathrm{~N}=3070$	$\mathrm{~N}=3070$	$\mathrm{~N}=3071$	$\mathrm{~N}=3070$	$\mathrm{~N}=3060$	$\mathrm{~N}=3071$

Female (N =1498)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	84.52	81.47	68.96	66.03	65.10	82.94	76.92	73.30
25th Percentile	75.00	75.00	62.00	52.00	50.00	75.00	66.67	60.00
50th Percentile (Median)	90.00	100.00	72.00	67.00	65.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	84.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	18.52	32.55	17.56	20.15	17.54	19.55	37.25	17.63
Range	100.00	100.00	90.00	100.00	95.00	100.00	100.00	100.00
\% Ceiling	27.8	69.5	0	2.4	2.4	40.9	68.4	8.1
\% Floor	0.1	8.6	0.3	0.3	0	0.2	14.1	0.1
Valid N	$\mathrm{N}=1498$	$\mathrm{~N}=1495$	$\mathrm{~N}=1497$	$\mathrm{~N}=1496$	$\mathrm{~N}=1498$	$\mathrm{~N}=1497$	$\mathrm{~N}=1492$	$\mathrm{~N}=1498$

Male ($\mathbf{N}=1563$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	87.38	82.48	70.91	67.39	68.46	84.48	81.37	75.99
25th Percentile	80.00	75.00	62.00	52.00	55.00	75.00	66.67	64.00
50th Percentile (Median)	95.00	100.00	74.00	67.00	70.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	17.23	31.78	17.56	19.82	17.68	19.01	34.51	16.64
Range	100.00	100.00	90.00	100.00	100.00	100.00	100.00	84.00
\% Ceiling	36.7	71.2	0	2.4	5.6	45.5	74.1	10.2
\% Floor	0.3	7.8	0.3	0.4	0.1	0.1	11.3	0
Valid N	$\mathrm{N}=1563$	$\mathrm{~N}=1558$	$\mathrm{~N}=1562$	$\mathrm{~N}=1563$	$\mathrm{~N}=1562$	$\mathrm{~N}=1562$	$\mathrm{~N}=1557$	$\mathrm{~N}=1562$

Table III: Norms for Age Groups, General Malaysian Population, Females \& Males Combined.

Ages 18-29	PF	REP	BP	GH	VT	SF	REE	MH
Female \& Males ($\mathrm{N}=709$)								
Mean	91.16	84.96	1.93	70.18	66.45	83.29	74.29	72.37
25th Percentile	90.00	75.00	62.00	57.00	55.00	75.00	33.33	60.00
50th Percentile (Median)	95.00	100.00	74.00	72.00	66.67	87.50	100.00	72.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	84.00
Std Deviation	13.66	28.51	16.61	17.40	16.40	18.71	38.25	17.16
Range	100.00	100.00	90.00	100.00	90.00	100.00	100.00	100.00
\% Ceiling	44.4	72.0	0	3.0	2.0	40.2	64.4	6.6
\% Floor	0.1	5.2	0.1	0.1	0	0.1	15.4	0.1
Valid N	$\mathrm{N}=709$	$\mathrm{N}=708$	$\mathrm{N}=709$	$\mathrm{N}=709$	$\mathrm{N}=709$	$\mathrm{N}=709$	$\mathrm{N}=708$	$\mathrm{N}=709$
Ages 30-39	PF	REP	BP	GH	VT	SF	REE	MH
Female \& Male ($\mathrm{N}=877$)								
Mean	89.14	83.60	70.94	67.81	67.57	84.08	80.25	75.17
25th Percentile	85.00	75.00	62.00	52.00	55.00	75.00	66.67	64.00
50th Percentile (Median)	95.00	100.00	74.00	70.00	70.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	14.87	31.54	17.07	19.09	17.30	18.54	35.74	16.48
Range	95.00	100.00	90.00	95.00	95.00	87.50	100.0080 .00	
\% Ceiling	37.4	74.1	0	3.0	4.3	42.6	73.4	8.3
\% Floor	0	7.8	0.1	0	0	0	12.7	0
Valid N	$\mathrm{N}=877$	$\mathrm{N}=875$	$N=876$	N=876	$N=876$	$N=876$	$\mathrm{N}=871$	$\mathrm{N}=876$
Ages 40-49	PF	REP	BP	GH	VT	SF	REE	MH
Female \& Males ($\mathrm{N}=781$)								
Mean	86.27	83.97	69.62	68.12	68.38	85.40	81.45	76.39
25th Percentile	80.00	75.00	62.00	55.00	55.00	75.00	66.67	64.00
50th Percentile (Median)	90.00	100.00	72.00	70.00	70.00	87.50	100.00	80.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	89.33
Std Deviation	16.51	29.54	17.42	19.37	17.86	17.88	34.33	16.79
Range	100.00	100.00	90.00	100.00	90.00	87.50	100.00	80.00
\% Ceiling	28.8	71.0	0	2.3	5.4	47.3	74.0	11.1
\% Floor	0.3	6.0	0.1	0.1	0	0	10.9	0
Valid N	$\mathrm{N}=781$	$\mathrm{N}=778$	$\mathrm{N}=780$	$\mathrm{N}=781$	$\mathrm{N}=781$	$\mathrm{N}=780$	$\mathrm{N}=778$	$\mathrm{N}=781$

Ages 50-59 Female \& Males ($\mathrm{N}=411$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	80.10	79.21	69.11	62.56	66.31	83.70	81.83	74.85
25th Percentile	70.00	75.00	62.00	45.33	50.00	75.00	66.67	60.00
50th Percentile (Median)	85.00	100.00	72.00	62.00	70.00	87.50	100.00	76.00
75th Percentile	95.00	100.00	90.00	80.33	80.00	100.00	100.00	92.00
Std Deviation	20.73	34.51	17.87	22.16	17.80	20.30	33.80	18.17
Range	100.00	100.00	90.00	100.00	95.00	100.00	100.00	80.00
\% Ceiling	21.7	67.6	0	1.7	4.4	45.3	73.6	9.7
\% Floor	0.2	10.7	0.2	1.2	0	0.5	10.8	0
Valid N	$\mathrm{N}=411$	$\mathrm{N}=410$	$\mathrm{N}=411$	$\mathrm{N}=411$	$\mathrm{N}=411$	$\mathrm{N}=411$	$\mathrm{N}=409$	$\mathrm{N}=411$
Ages 60-69	PF	REP	BP	GH	VT	SF	REE	MH
Female \& Males ($\mathrm{N}=192$)								
Mean	71.51	67.58	63.36	57.01	61.98	80.21	78.30	73.83
25th Percentile	55.00	25.00	50.17	40.83	50.00	62.50	66.67	60.00
50th Percentile (Median)	75.00	100.00	62.00	60.00	60.00	87.50	100.00	76.00
75th Percentile	90.00	100.00	84.00	72.00	75.00	100.00	100.00	88.00
Std Deviation	22.29	41.25	20.39	21.80	17.81	21.79	37.02	17.73
Range	90.00	100.00	90.00	92.00	100.00	100.00	100.00	84.00
\% Ceiling	9.4	56.3	0	0	2.1	36.5	71.4	8.9
\% Floor	0	18.8	1.6	0	0.5	0.5	13.5	0
Valid N	$\mathrm{N}=192$	$\mathrm{N}=192$	$\mathrm{N}=192$	$\mathrm{N}=191$	$\mathrm{N}=192$	$\mathrm{N}=192$	$\mathrm{N}=192$	$\mathrm{N}=192$
Ages 70 \& over	PF	REP	BP	GH	VT	SF	REE	MH
Female \& Males ($\mathrm{N}=61$)								
Mean	64.34	67.62	62.84	52.05	56.23	72.75	73.22	71.41
25th Percentile	45.00	16.67	48.00	35.00	40.00	62.50	33.33	54.67
50th Percentile (Median)	68.33	100.00	62.00	48.00	51.67	75.00	100.00	69.33
75th Percentile	90.00	100.00	79.00	72.00	78.33	100.00	100.00	92.00
Std Deviation	26.62	43.38	19.74	25.89	25.06	9.27	41.19	20.33
Range	100.00	100.00	90.00	97.00	100.00	100.00	100.00	84.00
\% Ceiling	4.9	60.7	0	0	6.6	36.1	67.2	16.4
\% Floor	3.3	23.0	1.6	4.9	1.6	1.6	19.7	0
Valid N	$\mathrm{N}=61$							

Table IV: Norms for Females by Age Group.

Ages 18-29 Female ($\mathrm{N}=445$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	90.44	85.62	71.99	70.15	65.61	82.98	74.25	72.16
25th Percentile	85.00	75.00	62.00	57.00	55.00	75.00	33.33	60.00
50th Percentile (Median)	95.00	100.00	73.33	72.00	65.00	87.50	100.00	72.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	84.00
Std Deviation	13.11	28.29	15.85	17.29	16.30	18.50	38.27	17.28
Range	80.00	100.00	90.00	85.00	90.00	87.50	100.00	100.00
\% Ceiling	38.9	73.7	0	2.5	1.6	38.9	64.4	6.1
\% Floor	0	5.2	0.2	0	0	0.4	15.3	0.2
Valid N	$\mathrm{N}=445$	$\mathrm{N}=445$	$\mathrm{N}=445$	$\mathrm{N}=445$	$\mathrm{N}=445$	$\mathrm{N}=445$	$\mathrm{N}=444$	$\mathrm{N}=445$
Ages 30-39 Female ($\mathrm{N}=455$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	87.01	82.65	69.65	66.44	65.76	83.90	78.10	74.09
25th Percentile	80.83	75.00	62.00	52.00	50.83	75.00	66.67	63.33
50th Percentile (Median)	90.00	100.00	72.00	67.00	65.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	16.04	32.65	17.24	19.27	17.37	18.41	37.27	16.82
Range	95.00	100.00	90.00	95.00	95.00	87.50	100.00	80.00
\% Ceiling	28.8	73.3	0	2.9	2.6	41.1	71.0	7.5
\% Floor	0	8.6	0.2	0	0	0	14.4	0
Valid N	$\mathrm{N}=455$	$\mathrm{N}=454$	$\mathrm{N}=455$	$\mathrm{N}=454$	$\mathrm{N}=455$	$\mathrm{N}=455$	$\mathrm{N}=452$	$\mathrm{N}=455$
Ages 40-49 Female ($\mathrm{N}=347$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	83.37	81.07	66.57	66.31	65.76	83.85	77.94	74.27
25th Percentile	75.00	75.00	52.00	52.00	50.00	75.00	66.67	60.00
50th Percentile (Median)	90.00	100.00	62.00	67.00	65.00	87.50	100.00	74.67
75th Percentile	95.00	100.00	84.00	82.00	80.00	100.00	100.00	92.00
Std Deviation	17.42	31.61	18.45	20.03	18.38	18.84	36.22	18.18
Range	95.00	100.00	90.00	100.00	90.00	87.50	100.00	80.00
\% Ceiling	22.5	66.5	0	2.3	3.5	44.8	68.8	10.7
\% Floor	0	7.8	0.3	0.3	0.3	0	12.7	0
Valid N	$\mathrm{N}=347$	$N=346$	$\mathrm{N}=346$	$N=347$	$\mathrm{N}=347$	$N=346$	$N=346$	$\mathrm{N}=347$

Ages 50-59 Female ($\mathrm{N}=150$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	73.93	73.99	66.67	58.93	62.50	80.17	78.52	72.75
25th Percentile	62.08	50.00	56.17	45.00	50.00	67.71	66.67	60.00
50th Percentile (Median)	80.00	100.00	68.67	58.50	62.50	87.50	100.00	76.00
75th Percentile	91.25	100.00	84.00	77.00	75.00	100.00	100.00	88.00
Std Deviation	23.74	37.88	18.73	22.83	17.93	23.36	36.57	19.03
Range	100.00	100.00	90.00	100.00	95.00	100.00	100.00	80.00
\% Ceiling	16.0	59.7	0	2.7	2.7	38.7	70.5	6.7
\% Floor	0.7	16.1	0.7	1.3	0	1.3	13.4	0
Valid N	$\mathrm{N}=150$	$\mathrm{N}=149$	$N=150$	$\mathrm{N}=150$	$\mathrm{N}=150$	$\mathrm{N}=150$	$\mathrm{N}=149$	$\mathrm{N}=150$
Ages 60-69 Female ($\mathrm{N}=64$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	64.14	68.75	61.59	54.27	60.00	79.69	76.04	70.88
25th Percentile	50.00	25.00	41.00	34.17	45.00	62.50	41.67	53.00
50th Percentile (Median)	65.00	100.00	62.00	59.00	60.00	87.50	100.00	72.00
75th Percentile	83.75	100.00	74.00	73.50	75.42	100.00	100.00	87.00
Std Deviation	22.67	40.82	18.86	24.32	17.37	21.54	38.70	18.41
Range	85.00	100.00	68.00	92.00	70.00	100.00	100.00	76.00
\% Ceiling	4.7	57.8	0	3.2	0	32.8	68.8	9.4
\% Floor	0	17.2	0	0	0	1.6	15.6	0
Valid N	$\mathrm{N}=64$	$\mathrm{N}=64$	$\mathrm{N}=64$	$\mathrm{N}=63$	$\mathrm{N}=64$	$\mathrm{N}=64$	$\mathrm{N}=64$	$\mathrm{N}=64$
Ages 70 \& over Female ($\mathrm{N}=18$)	PF	REP	BP	G	VT	SF	REE	MH
Mean	60.83	73.61	63.78	51.50	55.56	72.22	77.78	69.56
25th Percentile	36.25	31.25	51.92	35.83	41.25	40.62	69.44	56.50
50th Percentile (Median)	70.00	100.00	62.00	46.00	51.25	84.37	100.00	66.00
75th Percentile	94.17	100.00	87.5	90.00	87.50	100.00	100.00	88.00
Std Deviation	30.98	39.73	20.82	29.89	24.43	32.24	39.61	18.82
Range	100.00	100.00	68.00	97.00	85.00	87.50	100.00	60.00
\% Ceiling	5.6	66.7	0	0	0	38.9	72.2	16.7
\% Floor	5.6	11.1	0	5.6	0	0	16.7	0
Valid N	$\mathrm{N}=18$	$\mathrm{N}=18$	$\mathrm{N}=18$	$\mathrm{N}=18$	$N=18$	$\mathrm{N}=18$	$\mathrm{N}=18$	$\mathrm{N}=18$

Table V: Norms for Males by Age Group.

Ages 18-29 Male ($\mathrm{N}=262$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	92.40	83.72	71.86	70.18	67.82	83.83	74.17	72.75
25th Percentile	90.00	75.00	62.00	57.00	55.00	75.00	33.33	60.00
50th Percentile (Median)	100.00	100.00	74.00	72.00	70.00	87.50	100.00	74.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	85.00
Std Deviation	14.52	28.98	17.90	17.65	16.54	19.08	38.36	17.00
Range	100.00	100.00	80.00	100.00	80.00	100.00	100.00	84.00
\% Ceiling	53.8	69.0	0	3.8	2.7	42.4	64.1	7.6
\% Floor	0.4	5.4	0	0.4	0	0.4	15.6	0
Valid N	$\mathrm{N}=262$	$\mathrm{N}=261$	$\mathrm{N}=262$	$\mathrm{N}=262$	$\mathrm{N}=262$	$\mathrm{N}=262$	$\mathrm{N}=262$	$\mathrm{N}=262$
Ages 30-39 Male ($\mathrm{N}=421$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	91.45	84.58	72.29	69.29	69.56	84.23	82.54	76.28
25th Percentile	90.00	75.00	62.00	55.67	55.00	75.00	100.00	64.00
50th Percentile (Median)	95.00	100.00	74.00	72.00	70.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.33
Std Deviation	13.14	30.34	16.80	18.83	17.05	18.69	33.94	16.02
Range	90.00	100.00	70.00	90.00	85.00	87.50	100.00	76.00
\% Ceiling	46.8	74.8	0	3.1	6.2	44.0	75.8	9.0
\% Floor	0	6.9	0.2	0	0	0	11.0	0
Valid N	$\mathrm{N}=421$	$\mathrm{N}=420$	$\mathrm{N}=420$	$\mathrm{N}=421$	$\mathrm{N}=420$	$\mathrm{N}=420$	$\mathrm{N}=418$	$\mathrm{N}=420$
Ages 40-49 Male ($\mathrm{N}=429$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	88.59	86.24	72.11	69.61	70.63	86.66	84.39	78.26
25th Percentile	85.00	75.00	62.00	57.00	60.00	75.00	100.00	68.00
50th Percentile (Median)	95.00	100.00	74.00	72.00	70.00	87.50	100.00	80.00
75th Percentile	100.00	100.00	90.00	85.00	80.00	100.00	100.00	89.33
Std Deviation	15.39	27.72	16.11	18.63	17.1	17.02	32.39	15.26
Range	100.00	100.00	68.00	95.00	80.00	87.50	100.00	72.00
\% Ceiling	33.8	. 74.7	0	2.3	7.0	49.4	78.5	11.7
\% Floor	0.5	4.7	0	0	0	0	9.4	0
Valid N	$\mathrm{N}=429$	$\mathrm{N}=427$	$\mathrm{N}=429$	$N=429$	$\mathrm{N}=429$	$\mathrm{N}=429$	$\mathrm{N}=427$	$\mathrm{N}=429$

Ages 50-59 Male ($\mathrm{N}=260$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	83.69	82.12	70.43	64.55	68.46	85.77	83.66	76.09
25th Percentile	75.00	75.00	62.00	52.00	55.00	75.00	83.33	61.00
50th Percentile (Median)	90.00	100.00	74.00	64.50	70.00	87.50	100.00	80.00
75th Percentile	98.75	100.00	90.00	82.00	80.00	100.00	100.00	92.00
Std Deviation	17.90	32.17	17.22	21.51	17.40	18.07	32.06	17.60
Range	85.00	100.00	70.00	100.00	85.00	75.00	100.00	68.00
\% Ceiling	25.0	71.9	0	1.2	5.4	49.2	75.3	11.5
\% Floor	0	7.7	0	1.2	0	0	9.3	0
Valid N	$\mathrm{N}=260$	$\mathrm{N}=260$	$\mathrm{N}=260$	$\mathrm{N}=260$	$\mathrm{N}=260$	$\mathrm{N}=260$	$\mathrm{N}=259$	$\mathrm{N}=260$
Ages 60-69 Male ($\mathrm{N}=128$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	75.20	66.99	64.24	58.36	62.97	80.47	79.43	75.31
25th Percentile	65.00	25.00	51.00	45.00	50.00	65.63	66.67	64.00
50th Percentile (Median)	80.00	100.00	62.00	61.00	60.00	87.50	100.00	76.67
75th Percentile	93.75	100.00	84.00	72.00	75.00	100.00	100.00	88.00
Std Deviation	21.24	41.61	21.12	20.41	18.02	22.00	36.26	17.27
Range	90.00	100.00	90.00	92.0	100.00	87.50	100.00	84.00
\% Ceiling	11.7	55.5	0	0	3.1	38.3	72.7	8.6
\% Floor	0	19.5	2.3	0	0.8	0	12.5	0
Valid N	$\mathrm{N}=128$							
Ages 70 \& over Male ($\mathrm{N}=43$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	65.81	65.12	62.44	52.28	56.51	72.97	71.32	72.19
25th Percentile	49.17	. 00	48.75	35.00	39.17	62.50	27.78	54.00
50th Percentile (Median)	70.00	100.00	62.00	50.00	53.33	75.00	100.00	72.00
75th Percentile	89.17	100.00	79.00	73.25	79.17	100.00	100.00	94.00
Std Deviation	24.83	45.03	19.52	24.41	25.60	28.34	42.15	21.09
Range	100.00	100.00	90.00	97.00	100.00	100.00	100.00	84.00
\% Ceiling	4.7	58.1	0	0	9.3	34.9	65.1	16.3
\% Floor	2.3	27.9	2.3	4.7	2.3	2.3	20.9	0
Valid N	$\mathrm{N}=43$							

Table VI: Norms for Ethnic Groups, General Malaysian Population, Females \& Males Combined

Malay ($\mathrm{N}=2019$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	87.00	81.81	69.58	67.09	67.81	84.44	79.58	75.83
25th Percentile	80.00	75.00	62.00	52.00	55.00	75.00	66.67	64.00
50th Percentile (Median)	95.00	100.00	72.00	67.00	70.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	16.98	32.33	17.32	19.96	17.59	18.98	35.86	17.03
Range	100.00	100.00	90.00	100.00	100.00	100.00	100.00	100.00
\% Ceiling	33.8	70.4	0	2.1	4.5	44.8	71.9	10.5
\% Floor	0.1	8.2	0.3	0.2	0.1	0.1	12.8	0.0
Valid N	$\mathrm{N}=2019$	$\mathrm{N}=2014$	$\mathrm{N}=2018$	$\mathrm{N}=2018$	$\mathrm{N}=2019$	$\mathrm{N}=2019$	$\mathrm{N}=2014$	$\mathrm{N}=2019$
Chinese ($\mathrm{N}=505$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	85.52	85.69	74.52	67.32	65.37	82.43	82.67	73.26
25th Percentile	80.00	100.00	62.00	52.00	55.00	75.00	100.00	64.00
50th Percentile (Median)	90.00	100.00	80.00	67.50	65.00	87.50	100.00	73.33
75th Percentile	100.00	100.00	90.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	17.50	29.87	17.27	19.28	17.36	19.53	33.54	16.89
Range	85.00	100.00	90.00	100.00	95.00	100.00	100.00	92.00
\% Ceiling	28.5	77.2	0	3.6	3.2	39.6	75.9	6.1
\% Floor	0	6.3	0.2	0.2	0	0.2	10.2	0
Valid N	$N=505$	$\mathrm{N}=505$	$\mathrm{N}=505$	$\mathrm{N}=504$	$\mathrm{N}=505$	$\mathrm{N}=505$	$\mathrm{N}=502$	$\mathrm{N}=505$
Indian ($\mathrm{N}=165$)	PF	REP	BP	GH	VI	SF	REE	MH
Mean	78.76	79.24	66.00	65.02	61.55	79.73	74.80	67.85
25th Percentile	68.33	75.00	52.00	52.00	50.00	65.62	33.33	56.00
50th Percentile (Median)	85.00	100.00	68.00	65.00	65.00	87.50	100.00	69.33
75th Percentile	95.00	100.00	84.00	82.00	75.00	100.00	100.00	80.00
Std Deviation	20.99	31.07	19.29	19.72	17.75	20.83	36.20	17.96
Range	100.00	100.00	90.00	100.00	90.00	87.50	100.00	84.00
\% Ceiling	21.8	58.8	0	0.6	1.8	32.3	62.2	3.6
\% Floor	0.6	7.9	0.6	1.2	0	0	11.6	0
Valid N	$\mathrm{N}=165$	$N=165$	$N=165$	$N=165$	$\mathrm{N}=165$	$\mathrm{N}=164$	$\mathrm{N}=164$	$\mathrm{N}=165$

Other Bumiputera (N=354)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	84.04	78.35	66.98	64.57	65.20	83.53	74.83	73.01
25th Percentile	75.00	70.83	52.00	52.00	50.00	75.00	33.33	60.00
50th Percentile (Median)	95.00	100.00	62.00	65.33	65.00	87.50	100.00	76.00
75th Percentile	100.00	100.00	84.00	82.00	80.00	100.00	100.00	88.00
Std Deviation	20.72	34.61	17.63	21.20	18.18	19.25	38.58	17.58
Range	100.00	100.00	80.00	100.00	90.00	87.50	100.00	80.00
\% Ceiling	33.9	65.0	0	3.1	3.7	44.2	66.1	9.1
\% Floor	0.3	11.1	0	0.8	0	0	16.0	0
Valid N	$\mathrm{N}=354$	$\mathrm{~N}=351$	$\mathrm{~N}=353$	$\mathrm{~N}=354$	$\mathrm{~N}=353$	$\mathrm{~N}=353$	$\mathrm{~N}=\mathbf{3 5 1}$	$\mathrm{N}=353$
Others ($\mathrm{N}=29$)	PF	REP	BP	GH	VT	SF	REE	MH
Mean	87.24	93.97	75.69	68.38	70.52	81.90	73.56	76.28
25th Percentile	82.50	100.00	62.00	58.50	57.50	70.83	44.44	68.00
50:h Percentile (Median)	95.00	100.00	74.00	70.33	75.00	91.67	100.00	77.33
75th Percentile	100.00	100.00	90.00	87.00	80.00	100.00	100.00	84.00
Std Deviation	21.11	19.66	14.68	20.02	14.10	23.76	39.22	12.65
Range	100.00	100.00	48.00	85.00	60.00	100.00	100.00	48.00
\% Ceiling	34.5	86.2	0	3.4	3.4	48.3	62.1	3.4
\% Floor	3.4	3.4	0	0	0	3.4	17.2	0
Valid N	$\mathrm{N}=29$	$\mathrm{~N}=29$						

Fig. 1: Box plot for eight subscales of SF-36, by sex

Fig. 2: Box plot for eight subscales of SF-36, by age

Fig. 3: Box plot for eight subscales of SF-36, by ethnicity

Fig. 4: Comparison of QOL Mean Scores for General Population for some countries

Discussion

Health of the population in relation to functional health, well-being, and relative burden of disease are essential information to evaluate the effectiveness of any health care service across diverse populations. The dearth of such information can be attributed to difficulties in finding measurement tools that is both appropriate and practical to apply. We have used the SF-36 because of its well-established evidence that suggests the instrument to be sensitive to changes in the health of the general population ${ }^{6,7}$.

Normative data make it possible to interpret the scale score for an individual respondent or the average score for a group of respondents in comparison to the distribution of scores for other individuals in the morning sample. For normative data to be valid, they must be based on a well-defined and representative sample of the population ${ }^{4}$. Though effort had been made in the sampling design to increase representativeness, with a response rate of only 30.6% and significant age-sex composition and ethnic differences between the sample and the population, readers are cautioned on the possible influence of response bias.

The means and standard deviations are presented to enable comparison of individuals or specific groups of populations ${ }^{\prime}$ scores with the Malaysian average. Caution is advised in interpreting and using the results due to poor response rate. Furthermore, some subgroups have smaller sample sizes and estimates may not be stable. This is especially so for the Others ethnic group, and those 70 and above. Care also needs to be exercised when interpreting the results for SF and BP due to the errors in the questionnaire.

In addition, the scope of these results is limited to Malaysian adults aged 18 years and above, and those literate in either Bahasa Malaysia or English Language. Response bias may also affect the means, given the poor response rate of only 30.6%, though reported rates for postal surveys have been reported to range from a low of 24% to a high of $92 \%^{18}$.

In general, the mean scores for all scales were above 65.0 QOL units. On a scale of $0-100$, the higher scores may be interpreted as having achieved substantial quality in their life with the population perceiving to be in better health physically than mentally. The variability in scores by age and sex underscores the
need to use the appropriate age- or sex-specific normative data whenever possible.

Our findings show that there are significant gender differences within the Malaysian population, with men scoring higher on all domains. These results are consistent with those reported for the United States, United Kingdom and Canada ${ }^{12}$.

Our study did not show any significant differences between ethnic groups. In addition, lower scores were reported for MH among the younger population, perhaps reflecting higher expectations. Further indepth qualitative studies are required to attempt explaining these phenomena.

Overall, means for the Malaysian population generally differ from the population norms for USA ${ }^{4}$, Canada ${ }^{12}$ and the ACT, Australia ${ }^{13}$ with the exception of REE, which is noted to be a less sensitive scale ${ }^{4}$. The differences between countries could be due to methodological dissimilarity instead of reflecting true differences. Possibly, there may be differences in agesex composition of the general population between the countries, differences in prevalence of co morbidity, and problems with cross-population comparability between the countries. The norms were not adjusted to a standard population composition, as norms from other countries were not presented in that manner and hence comparison would be difficult. Problems with cross population comparability include inconsistent reporting between actual and self-reported health states and differences in end-points and cut-points on the reference scale ${ }^{19}$. Biases in self-report of health status in non-fatal outcomes had been reported to affect comparison across populations ${ }^{19}$. Here, the question is whether, for example, the sexes, differ in their willingness to endorse lower end (poorer functioning) items, or whether it actually reflects poorer Quality of Life for women. We assumed that the distribution of QOL is equivalent for both sexes, and it is the reporting that differs. Hence, we have reported separate norms ${ }^{20}$.

Most subscales of SF-36 are sensitive for the Malaysian general population, with the exception of REP and REE. Sensitivity of the subscale PF increases with age. The ceiling effects noted were most conspicuous for the REP and REE. This was not surprising as these two scales of the SF-36 are relatively coarse role disability scales ${ }^{21}$. Both measures have only four and five levels respectively across a restricted range and, therefore, usually have the most problems with ceiling and floor

ORIGINAL ARTICLE

effects. Knowing the fact that ceiling and floor effects does exist is important since the ability of an instrument to detect change is constrained by the percentage of respondent at either end of the effects.

The differences seen in the SF-36 scores across age, gender and countries confirm that these Malaysian norms are essential. It is useful for comparison with diseased state values and means in studies in Malaysia. It may be used as a measure to reflect the "shortfali" in quality of life for a diseased or handicapped state when compared to the general Malaysian population. This distribution can also be used as a baseline for comparison in future surveys looking at quality of life of the general population, especially after interventional programmes of public health nature.

Acknowledgements

This study received a grant from the Intensified Research Priority Areas Grant, Government of Malaysia (IRPA Code:06-05-05-0177). The authors would like to express their gratitude to the Department of Statistics Malaysia including Hjh. Normah Mohd Aris, Head, Communications And Operations Division, Kate Van Kit Yee, Rosilawati, Rafliza and Kho Sian Eng and all the state statisticians for their invaluable assistance in planning and implementation of the data collection phase of this survey. Their assistance, support and agreement to allow this survey to piggyback on the third Round of the Labour Force Survey is very much appreciated and valued. The researchers are also grateful to Prof Wan Manan and team, University Science Malaysia (USM) for their assistance and for providing their developmental version of the translated Malay version of SF-36. All their support and cooperation given is very much appreciated.

1. Guyatt GH and Cook DJ. Health status, quality of life and the individual. Journal of American Medical Association. 1994; 272: 630-31.
2. Bowling A. Measuring Health. A Review Of Quality Of Life Measurement Scales. Buckingham: Open University Press, 1991.
3. Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. JAMA 1995; 1995: 59-65.
4. Ware JE Jr, Kristin KS, Kosinski M, et al. SF-36 Health Survey manual and Interpretation Guide. Boston, Massachusetts: Nimrod Press, 1993.
5. Shiely JC, Boyliss MS, Keller SD, et al. SF-36 Health Survey Annotated Bibliography: First Edition (19881995). Boston, Massachusetts: The Health Institute, New England Medical Centre, 1996.
6. Hemingway H, Stafford M, Stansfeld S, Shipley M \& Marmot M. Is the SF-36 a valid measure of change in population health? Results from the Whitehall II study. BMJ 1997; 315: 1273-79.
7. Watson EK, Firman DW, Baade PD, Ring I. Telephone administration of the SF-36 Health Survey: validation studies and population norms for adults in Queensland. Aust NZ J Public Health 1996; 306: 1437-40. [MEDLINE]
8. Ware JE Jr, Sherbourne CD. The MOS 36 -item Short-Form Health Survey (SF-36): I. Conceptual framework and item selection. Med Care 1992; 30(6): 473-83.
9. McHorney CA, Ware JE Jr, Raczek AE. The MOS 36 -item Short-Form Health Survey (SF-36):II. Psychometric and Clinical Tests of Validity in Measuring Physical and Mental Health Constructs. Med Care 1993; 31(2): 247-63.
10. McHorney CA, Ware JE Jr, Lu JFR \& Sherbourne CD. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med Care 1994; 32(1): 40-66.
11. Ware JE Jr, Kosinski M, Bayliss MS, McHorney CA, Rogers WH, Raczek A. Comparison of Methods for the Scoring and Statistical Analysis of SF-36 health profile and summary measures: summary results from the Medical Outcomes Study. Med Care 1995; 33 (4 Suppl): AS264AS279.
12. Wilma M Hopman, Tanveer Towheed, Tassos Anastassiades, Alan Tenenhouse, et al. Canadian Normative Data for the SF-36 Health Survey. Canadian Medical Association J 2000; 163(3): 265-71.
13. Gannon D, Gordon C, Egloff B \& Shadbolt B. Health Related Quality of Life in the ACT: 1994-1995. The Baseline. Australia: ACT Department of Health \& Community Care, Population Health Group, Epidemiology Unit, 1997.
14. Jenkinson C, Stewart-Brown S, Peterson S, Paice C. Assessment of the $\mathrm{SF}-36$ version 2 in the United Kingdom. J Epidemiol Community Health 1999; 53: 46-50. [MEDLINE].
15. Sararaks S, Rugayah B, Azman AB, Karuthan C \& Low LL. Quality of life: How do Malaysian asthmatics fare? . Med J Malaysia 2001; 56(3): 350-58.
16. Population and Housing Census of Malaysia 2000: Population Distribution and Basic Demographic Characteristics. Malaysia: Department of Statistics, July 2001.
17. Ware JE Jr. SF-36 Health Survey Manual and Interpretation Guide. Boston: The Health Institute, New England Medical Centre, 1993.
18. Basic Survey Design \& Implementation. Module 4 Health surveys. Workshop on Evidence for Health Policy: Burden of Disease, Cost-effectiveness, Health Systems Performance and Health Surveys, Dikhololo, South Africa. World Health Organization \& Burden of Disease Unit, Harvard Center for Population and Development Studies, Oct 2001.
19. Sadana R, Mathers CD, Lopez AD, Murray CJL \& Iburg K. Comparative analysis of more than 50 household surveys on health Status. World Health Organization GPE Discussion Paper Series No. 15 EIP/GPE/EBD.
20. Streiner DL \& Norman GR. Health Measurement Scales. A practical guide to their development and use. New York: Oxford University Press, 1995.
21. Ware JE Jr \& Gandek B. Overview of the SF-36 Health Survey and the Intenational Quality of Life Assessment (IQOLA) Project. J Clin Epidemiol 1998; 51(11): 903-12.

[^0]: This article was accepted: 23 April 2003
 Corresponding Author: Azman Abu Bakar, Health Systems Research Division, Institute of Public Health, 50590 Kuala Lumpur

