The Differentiation of Bone Marrow Stem Cells Into Cardiomyocytes: An Immunocytochemical Analysis

B S Nadiah*,**, B S Shamsul*, M H Ng*, B H I Ruszymah***

*Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, **Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, ***Department of Physiology, Universiti Kebangsaan Malaysia

SUMMARY
Bone marrow stem cells (BMSC) can be differentiated into cardiomyocytes (CMC), which is of value in myocardial infarction repair. Hence, the expression of muscle-specific protein Alpha Sarcomeric Actin (ASA) and heart specific protein Phospholamban (PLB) were accessed after BMSC exposure to different induction factors that were reported to induce myogenic differentiation. More than 80% (PLB=94.44±0.51%; ASA=84.44±3.78%) of cells after 5-azacytidine exposure expresses both PLB and ASA protein but cells viability were noted around 60.16 ±6.26%. In the basic Fibroblast Growth Factor (bFGF) and Hydrocortisone with 5-azacytidine incorporated group, there are about 75.16 ± 4.84% of PLB expression and 95.66 ± 1.89% of ASA expression. The cell viability of this group is around 79.42±0.93%. Hence, it is better to combine 5-azacytidine with bFGF and hydrocortisone for CMC differentiation.

INTRODUCTION
Cardiomyocytes is reported to be terminally differentiated, thus they could not regenerate sufficiently following myocardial infarction. BMSC were tested with several induction factors that include 5-azacytidine, bFGF and Hydrocortisone to determine the optimal induction factors in vitro.

MATERIAL AND METHODS
Sheep, Ovis aries bone marrow was aspirated from the iliac crest. Cells were cultured in Iscove’s modified Dulbecco’s medium supplemented with 10% Fetal Bovine Serum, 1% antibiotic-antimycotic, 1% Glutamax and 1% Vitamin C at 37°C with 5% CO₂ in 6-well plate at passage 0 (P₀). Cells were divided into three different induction groups at passage 1(P₁) on chamber slides (5 X 10⁶ cells/cm²). All groups were exposed to induction factors for 24 hours. Monoclonal antibodies to Phospholamban (PLB) and Alpha Sarcomeric Actin (ASA) were purchased from Abcam, UK. Cells were washed with Phosphate Buffer Saline twice before fixing them with 4% Paraformaldehyde for 10 minutes. Permeabilization of cells was done using 0.1% Triton X-100 for 5 minutes. After blocking with 10% of Rabbit Serum for 30 minutes, cells were incubated with primary antibodies overnight at 4°C. Secondary antibody (FITC-conjugated anti-rabbit IgG) was added after serial washing the next day for 1 hour at room temperature. Observation and image analysis was done using epifluorescence microscope.

RESULTS

Fig 3: BMSC viability for all induction groups compared to control. Group (A) 5µM of 5-azacytidine; Group (B) 10nM bFGF + 50µM Hydrocortisone; and Group (C) 5µM of 5-azacytidine + 10nM bFGF + 50µM Hydrocortisone. Cell viability for 5-azacytidine (*) exposed group is significantly lower as compared to the control group (p<0.05).
Fig 4: PLB and ASA protein expression for all induction groups compared to control. Group (A) 5µM of 5-azacytidine; Group (B) 10nM bFGF + 50µM Hydrocortisone; and Group (C) 5µM of 5-azacytidine + 10nM bFGF + 50µM Hydrocortisone. Expression of both proteins on all induction groups are significantly higher as compared to the control group which were cultured without any induction factors in the media.

PLB expression for treatment group A vs. control group. (p<0.05)

PLB expression for treatment group B vs. control group. (p<0.05)

***PLB expression for treatment group C vs. control group. (p<0.05)**

#ASA expression for treatment group A vs. control group. (p<0.05)

##ASA expression for treatment group B vs. control group. (p<0.05)

###ASA expression for treatment group C vs. control group. (p<0.05)

In the 5-azacytidine exposed group (Group A), 94.44±0.52% of the cells expressed PLB protein and 84.44±3.78% of them were observed to express ASA but the cells have 60.16±6.26% cell viability. Whereas inclusion of bFGF and Hydrocortisone in the culture medium (Group B) increase the cells viability up to 86.94±1.83% but gave less than 60% (PLB=62.71±2.85%; ASA=54.28±2.69%) expression of both proteins. Incorporation of bFGF and differentiation to CMC without compromising the cell viability.

DISCUSSION

The most commonly utilized induction factor for myogenic lineages is 5-azacytidine [1]. The result correlates to the ability of bFGF and hydrocortisone as potent mitogen and proliferation agents [2, 3]. In conclusion, this study finds that 5-azacytidine and bFGF plus hydrocortisone are the best combination to induce BMSC towards myogenic lineages.

REFERENCES

Trypsinization of Human Keratinocytes And Fibroblasts using Animal Free Trypsin: Towards Clinical Application

*Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre,**Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia

**SUMMARY
The objective of this study was to compare the efficacy between trypsin extracted from animal (Trypsin EDTA) and recombinant trypsin (TrypLE Select). The skin biopsy was digested using collagenase type 1 and the epidermis was dissociated with Trypsin EDTA or TrypLE Select. The cells were cultured until passage 2 and trysinized using respective trypsin. The cells yield was counted after trypsinization. The cells yield for both keratinocytes and fibroblasts were comparable between Trypsin EDTA and TrypLE Select. In conclusion, recombinant trypsin can be used as an alternative to the conventional animal-origin trypsin for clinical application.

**INTRODUCTION
Skin regeneration is important in tissue engineering especially in cases of chronic wounds 1. With tissue engineering technology, skin equivalents have been used clinically to repair burns and chronic ulcers 2. In order to construct bilayered skin, in vitro expansion of keratinocytes and fibroblasts is a crucial process. Unfortunately, many skin substitutes use components derived from animal origin. Therefore it is a challenge to produce a skin substitute using animal free product. In this study, the commercial trypsin from animal origin was compared with recombinant trypsin for human dermal fibroblast and keratinocyte isolation and expansion.

**MATERIALS AND METHODS
A 1x3 cm² skin biopsy was cleaned and swabbed with 70% alcohol. The skin was minced and digested in 0.4-0.8% collagenase Type I for 4-8 hours in a 37°C incubator-shaker to release the fibroblasts from dermis. After collagenase digestion, the fibroblasts and epidermis were pelleted down by centrifugation and the supernatant was discarded. The epidermis layer was digested with two different methods:

a) Animal Origin Trypsin: 8-10ml of Trypsin EDTA was added to the pellet, incubate for 5-10 minutes at 37°C for keratinocytes cells dissociation. Then, 8-10 ml of soybean trypsin inhibitor was added to stop the trypsin activity.

b) Recombinant Trypsin: 8-10ml of TrypLE Select was added to the pellet and incubated for 15-20 minutes at 37°C for keratinocytes cells dissociation.

The cell suspension was centrifuged before resuspending in 6 ml of 1:1 DKSFM and F12:DMEM supplemented with 10% Fetal Bovine Serum (FD+10%FBS). Fibroblasts and keratinocytes were seeded into three 9.6cm² wells and co-cultured at 37°C in 5% CO₂. Fibroblasts were removed when cells reached confluence and expanded into a T75 flask with FD+10%FBS. The remaining keratinocytes were cultured in DKSFM. The keratocytes and fibroblasts were subcultured after they reach 70% confluence. Keratinocytes were trypsinized using their respective trypsin: Trypsin EDTA for 5 minutes after 5 minutes incubation with Versene; TrypLE Select for 10-15 minutes. Fibroblasts were trypsinized using both trypsins for 5 minutes. Keratinocytes and fibroblasts were subcultured until passage 2 (P2) with seeding density of 1.0 x 10⁵ per well for keratinocyte and per flask for fibroblast and cultured in their respective medium.

**RESULTS

![Fig. 1](image-url)
Figure 1& 2 showed the comparison of cell yield between Trypsin EDTA and TrypLE Select for keratinocytes and fibroblasts in various passages. For keratinocytes, the number of cells increased rapidly for each passages started with 4x10^5 cells at P0 and increased up to 1x10^6 at P2 by using Trypsin EDTA. On contrast, the number of fibroblasts cells increase rapidly in TrypLE Select from P0 up to P1 with total cells 4x10^5 cells to 1x10^6 cells. However, there are no significant differences between both enzymes for both keratinocytes and fibroblasts cells.

DISCUSSION

The manipulation of skin cells for clinical application requires standardized protocols to ensure the product is safe and effective to be used in human. Study performed by Ellerström et al. (2006) also demonstrated that animal components are not necessary for the establishment and culture of human cells. In this study, preliminary results obtained showed that TrypLE Select gives comparative result compared to Trypsin EDTA. Reagents containing animal products can be a source of contamination which can evoke immune reaction. Therefore, TrypLE Select would be a more suitable choice since it does not contains animal product. In conclusion, we have successfully trypsinize human keratinocytes and fibroblast using recombinant trypsin which can be used as an alternative to the conventional animal-origin trypsin for clinical application.

REFERENCES

Establishment and Characterisation of Malaysian Human Breast Cancer Cell Lines.

J Y Lai, B Kamalidehghan, M R Zamanian, R Rosli, A Veerakumarasivam

Medical Genetics Laboratory, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan

SUMMARY

This project aimed to establish immortalised Malaysian primary breast cancer cell lines to facilitate the creation of an ideal Asian breast cancer model. Breast cancer cells were spontaneously immortalised from the malignant breast cancer specimens. After immortalisation, the cells were genotypically and phenotypically characterised. MCF7 cell line was used as control. After subsequent passages, two cell lines, C1 and C2 were created through spontaneous immortalisation. C1 was ERα and PR positive while C2 was ERα positive but PR negative. Both cells were HER2 positive. Wound healing assays confirmed the migratory capacity of these cells. The isolation and establishment of immortalised Malaysian primary breast cancer cell lines provide a new avenue in cancer research within an Asian perspective.

INTRODUCTION

Breast cancer is the most common cancer among women worldwide. In Malaysia, the National Cancer Registry (NCR) in 2003, reported breast cancer as the most frequent cancer among females in all age groups. It is more common in the Chinese ethnic group followed by Indians and Malays. Approximately 64.1% of cases were diagnosed in women between 40 and 60 years old and the lifetime risk of breast cancer among women is 1 in 16. In breast cancer research, cell lines are useful in vitro experimental models to study many aspects of carcinogenesis. They are used to determine key initiation and progression factors and obtain a better understanding of the disease, as well as the efficacy prediction of novel therapeutic compounds. However, breast cancer cell lines currently used are mostly derived from the Caucasian population.

MATERIALS AND METHODS

Breast cancer cells were isolated from tissues by using the Panomics Cancer Cell Isolation Kit and then were immortalised by continuous cultures. Two newly immortalised breast cancer cell lines, designated as C1 and C2, were successfully characterised genotypically and phenotypically, and compared with established breast cancer cell line, MCF7. In order to characterise the established breast cancer cell lines, both cell lines were examined using DNA-Profiling, karyotyping, immunocytochemistry and phenotypic assays (clonogenic assay and wound healing assay).

RESULTS AND DISCUSSION

Fig 1 (A) C1 and C2 cellular morphology at passage 125 and 85 respectively. (B) Giemsa stained metaphase spread of C1 and C2 at passage 105 and 85 respectively.

Figure 1A illustrates the breast cancer cells of C1 and C2 that grow as adherent monolayers with characteristic epithelial morphology and maintained continuously in vitro. While in figure 1B, metaphase spreads of both cell lines demonstrate hyperploidy with gross chromosomal arrangements. This corroborates with the current paradigm that invasive cancer cells acquire genomic instability through the failure of DNA damage response and repair in these cells.
Fig 2 (A) Agarose gel electrophoresis of RT-PCR products of ER and PR in C1, C2 and MCF7 cell lines. (B) Fluorescent immunocytochemistry of HER2 in C1, C2 and MCF7 cell lines. C1 is ER+, PR+ and Her2+; while C2 is ER+, PR- and Her2+.

Conclusions

In conclusion, the two newly established and characterised breast cancer cell lines from Malaysian patients provide an ideal in vitro model of Asian breast cancers. These cell lines can be used as tools for the development of future diagnostic and therapeutic targets that take into account the Asian genotypic variation.

REFERENCES

Respiratory Epithelial Cells Cultured from Human Nasal Polyps Showed Evidence of Viral Infections

S F Khor*, B S Aminuddin**, B H I Ruszymah***

*Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Cheras, Kuala Lumpur, Malaysia,
**Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Selangor, Malaysia,
***Department of Physiology, Medical Faculty Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur, Malaysia

SUMMARY
Respiratory epithelium cell monolayers derived from human nasal turbinate and nasal polyp have been developed and maintained in-vitro up to passage 2. In this study, the morphological changes of respiratory epithelium cell cultured from normal human nasal turbinate and nasal polyps have been observed and compared. Respiratory epithelium derived from nasal polyps showed intra-cytoplasmic inclusion bodies and cytopathic effect which is the evidence of virus infection, compared with the respiratory epithelial derived from nasal turbinate. Further studies need to be carried out to determine the pathogenesis of nasal polyps via tissue engineering technology.

INTRODUCTION
The nasal turbinate (NT) is a long, narrow and curled bone shelf which protrudes into the breathing passage of the nose. Nasal polyp (NP) is a chronic inflammatory disease of the upper airways, and the incidence rate is high in Southeast Asia. Polyps are not a separate growth, as is a tumor, and they consist of the same tissue as their surrounding areas. In general, NP is a multifactorial disease with several different etiological factors. Histopathological examination of the removed tissue is the most common method for NP diagnosis and etiopathogenesis study. Unfortunately, polyps have a strong tendency to return after they have been surgically removed. Heman Chopra, 2008 found that 16 out of 41 cases of NP were caused by infection which included fungal, bacteria and virus. The presence of the virus often gives rise to morphological changes in the host cell. Any detectable changes in the host cell due to infection are known as a cytopathic effect (CPE). Cytopathic effect may consist of cell rounding, disorientation, swelling or shrinking, death, detachment from the surface and multinuclear giant cell formation. The objective of this study is to look for evidence of virus infection in respiratory epithelial cell cultured from nasal polyps. This would further bring new light into the mechanism of nasal polyp formation.

MATERIALS AND METHODS
Nasal turbinates are tissues discarded from patient during turbinectomy and nasal polyps discarded tissues after polypectomy. Usages of human NT and NP specimens have been approved by the Universiti Kebangsaan Malaysia Research and Ethical Committee. Six human nasal turbinate specimens and six nasal polyps were studied. The samples were processed as described by Noruddin et al, 2007 using co-culture method. The monolayer respiratory epithelial cells (REC) morphologic features was examined and observed daily using the inverted light microscope (Olympus, Shinjuku-ku, Tokyo). The primary respiratory epithelial cultures were established by co-culture method until passage 2.

RESULTS
The REC had a typical and uniform polygonal morphology. Both the REC cultured derived from NT and NP were maintained up to passage 2. The morphology of the cells were observed and compared for any changes. Overall, the cells maintain polygonal morphology from passage 0 to 1. Binuclear cells were observed in the majority of cells which mean that the cells were dividing and growing normally. However, the REC derived from nasal polyps showed intracytoplasmic inclusion bodies (Figure 1A, black arrow) compared with the REC derived from nasal turbinates (Figure 1B). At passage 2, the RE derived from NP start to appear multiple shapes (Figure 2A) compared with RE derived from NT (Figure 2B) which still maintain the polygonal shape. Cytopathic effect was found in REC cultured from NP at passage 2 (Figure 3A&B), which is the evidence of virus infection.
DISCUSSION AND CONCLUSION

Virat, 2005 concluded that NP is a multifactorial disease with infectious, non-infectious, inflammation, anatomical and genetic abnormalities. In clinical practice, the NP was characterized by histological findings of the removed tissue. To date, no REC has been cultured in vitro to study the etiology, pathology mechanism and treatment of the NP. The inclusion vacuoles in RE of NP may be caused by the abnormal grow tendency or may be caused by virus or bacteria invasion. Inclusion bodies are nuclear or cytoplasmic aggregates of stainable substances, usually proteins. They typically represent sites of viral multiplication in a bacterium or a eukaryotic cell and usually consist of viral capsid proteins. Inclusion bodies can also be hallmarks of genetic diseases. Protein inclusion bodies are classically thought to contain miss-folded protein. When genes from one organism are expressed in another, the resulting protein sometimes forms inclusion bodies. Virus replication is often detected by the morphological changes, or cytopathic effect (CPE). CPE refers to degenerative changes in cells, especially cell culture, and may be associated with the multiplication of certain viruses. In spite of many recent advances in basic science, the etiology and pathogenesis of NP have still not been clearly clarified. In this study, we found evidence of virus infection in REC cultured from NP. Further study need to be carried out using tissue engineering technique to determine the pathogenesis and mechanisms of NP.

REFERENCES

Physical Model of a Dynamic Bioreactor Prototype for Skin Tissue Culture

M E Hoque*, M H Ng**, F Oguichen Lucky*, B H I Ruszymah**

*Department of Mechanical, Material and Manufacturing Engineering; University of Nottingham Malaysia Campus, **Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre

SUMMARY
For cases of burns, skin damage or diseases, there is a need for skin grafting. Conventional skin grafts are harvested from healthy part of the same patient. The drawbacks include, pain at or an additional injury at the donor site and limited availability of healthy skin in patients and major skin loss. This is where technology in tissue engineering is useful to produce biological skin substitute. To date the technology uses a static skin culturing technique which needs to be further improved. This study will focus on the development of a physical model of a dynamic bioreactor prototype for skin tissue culture to simulate the continuous air-liquid interface of skin in vivo. Statically cultured skin construct remains less than practical in terms of mechanical properties. This arises the need to culture tissue using dynamic bioreactor which is aim to provide efficient skin construct in vitro with the required properties. Method of bilayered skin equivalent culturing will be adopted to culture the fibrin-fibroblast and fibrin-keratinocyte skin tissue. This technique will initially involve static skin tissue culture and then advanced culture to be performed in the dynamic bioreactor to generate the equivalent skin tissue. Fibrin material will be used as a biomaterial scaffold for the regeneration of artificial skin construct.

INTRODUCTION
Bioreactors refer to systems in which conditions are closely controlled to permit or induce certain behaviour in living cells or tissues. The concept of bioreactors is neither new nor restricted to the field of tissue engineering. Microbiologists use bioreactors to grow culture of microorganism under defined condition. Bioreactors are also used in brewing, food, and pharmaceutical and biotechnology industry. The principle that physical stimuli can modulate cell function and tissue development has motivated the development of biomechanically active stimulation system to recellularise in vitro tissues by exposing them to physiological relevant mechanical stimulations. Tissue engineering bioreactors are intended for tissue engineering functions, for growing functional cells and tissue for transplantation. And also to control in vitro studies on the regulation effect of biochemical and biomechanical factors on cells and tissue development*. Dynamic bioreactor for tissue culture should ideally be based on the good understanding of the native environment of the tissue of interest. Tissue engineering bioreactors are designed to precisely regulate the cellular environment, support cell viability and organization, as well provide control of signalling during culturing period. They are also designed to account for specific mechanism of nutrient transfer and specific physical factors which are inherent in the native tissue. Tissue culture grown in 3D tissue cultures, starting from isolated cells has been hindered by the complexity of the dynamic system and the interplay between the different culture parameters. To obtain an efficient tissue construct, while culturing tissue in dynamic bioreactor. Culture can be carried out in a two or three dimensional scaffold that allows and induces the formation of new tissues after implantation. The scaffold provides structural templates for cell attachment and tissue growth, and this can be improved by applying certain stimuli that can elicit specific responses to the cells, which can be done either mechanically or chemically.

MATERIALS AND METHODS
The dynamic bioreactor prototype is designed from various design concepts and input specifications. The physical model is then developed from the original design.

RESULTS AND DISCUSSION
The conceptual design of the bioreactor for dynamic skin tissue culture is shown in Fig 1.

Fig 1: Computational model of the prototype
The physical model of the prototype bioreactor coupled with a motorized stage is shown Fig 2.

Fig 2: Developed physical model of the prototype

The developed dynamic bioreactor consists of a movable platform to which a tray holder is inserted which contains the culture trays. The platform is balanced horizontally by four guiding rods and is attached to a shaft using two strings (cables). The shaft itself is supported on two plain bearings and two supports. The shaft is connected to a motor shaft through a socket and its movement is set to be synchronous as that of the motor. A DC brush motor is used for the movement of the shaft and the resulting sequential vertical movement of the platform. The motor can change the direction of rotation allowing the platform to be moved upwards and downwards when the motor is switched on. Method of bilayered skin equivalent culturing will be adopted to culture the fibrin-fibroblast and fibrin-keratinocyte skin tissue under static condition\(^1\). The constructed bilayered skin will then be further cultured in the dynamic bioreactor that will be housed in an incubator. This dynamic culture will enable the air-liquid interface of the skin, where the bottom skin layer will be immersed in media and the top layer comes in contact with the air. This air-liquid interface skin culture also permits the recognition of the skin layers during implantation period after growth. The needed dynamic condition is obtained when the bioreactor is constantly operated in sequential movement technique or motion in the incubator. During the culturing process of skin cell in the bioreactor, skin stratification and simulation as well formation of the dense epithelium skin layer can be formed due to the interaction between air and liquid forming the air-liquid interface media. The dynamic bioreactor will also increase the mechanical properties of the skin which can be similar to those found in human dermis and epidermis with good prospect of clinical application\(^5\). Proof of concept will be conducted on bilayered skin construct. Control of the duration of construct submerges alternately in air and liquid will be further tested.

REFERENCES
Transfection of Human Bone Marrow-Derived Mesenchymal Stem Cells with hIFNγ Gene

L C Liew*, M Abdullah**, C F Leong***, S A W Fadilah***, S K Cheong****

*PPUKM-MAKNA Cancer Centre, Universiti Kebangsaan Malaysia, **Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, ***Faculty of Medicine, Universiti Kebangsaan Malaysia, ****Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman

SUMMARY
Bone marrow-derived mesenchymal stem cells (BM-MSC) have been proposed as potential cellular vehicles in therapeutic gene delivery because of their high proliferative capacity, multilineage differentiation ability, low immunogenicity and capability on migration to injured sites and cancers. Isolated BM-MSC were characterized, and expanded BM-MSC were transfected with pORF-hIFNγ plasmid DNA by nucleofection. Transfection efficiency of around 64% was achieved. ELISA analysis revealed that the production of hIFN-γ protein in transfected BM-MSC reached the peak at 24.72 ng/mL after 48 h post transfection. Real Time PCR was carried out to determine the mRNA expression levels in transfected BM-MSC. The mRNA expression of hIFNγ in transfected BM-MSC after 72 h post transfection was 12.29 x 10^3 fold higher when compared to control BM-MSC (Non-transfected BM-MSC).

INTRODUCTION
Human Mesenchymal Stem cells (hMSC) are multipotent progenitor cells that posses high proliferative capacity and are capable of multilineage differentiation1-2. MSC also exhibit direct immunosuppressive ability both in vitro and in vivo, suggesting that they are suitable vehicle for targeted delivery and local production of gene products for therapeutic purposes3-4. Interferon gamma (IFNγ), or type II interferon, is important in promoting host defense, inhibiting tumor generation, increasing tumor antigenicity and augmenting tumor immunity5. These suggest that IFNγ maybe a potential therapeutic agent for various tumor cells. In this study, isolated bone marrow-derived mesenchymal stem cells (BM-MSC) were tested for their capacity in carrying and delivering human interferon-gamma (hIFNγ) gene in vitro.

MATERIALS AND METHODS
Isolated BM-MSC were characterised through morphology, immunophenotyping, and differentiation assay. Expanded BM-MSC were transfected with pORF-hIFNγ plasmid DNA by nucleofection using Human MSC Nucleofector Kit (Amaxa GmbH). Non-transfected BM-MSC served as a negative control. Supernatants from BM-MSC were harvested at every 24 h of post transfection for three days. ELISA was used to measure the levels of hIFNγ protein expressed in vitro. Total RNA of BM-MSC were also extracted at every 24 h of post transfection. The mRNA expression of hIFNγ in BM-MSC was determined by Real Time PCR using Taqman universal PCR master mix (Applied Biosystems) and FAM-labelled Taqman probes (hIFNγ and β-actin). β-actin was used as endogenous control for normalisation.

RESULTS
Isolated BM-MSC showed typical morphology and were capable of differentiating into adipocytes and osteocytes upon chemical induction. Immunophenotyping via flow cytometry showed that cultured BM-MSC expressed the typical MSC surface markers: CD147, CD44, CD13, CD73, CD90 and CD166. Expanded BM-MSC were successfully nucleofected with PI-labelled pORF-hIFNγ plasmid DNA and the transfection efficiency of around 64% was achieved. ELISA analysis on different time points after transfection revealed that the hIFN-γ protein expressed in transfected BM-MSC was detectable at day 1 (0.17 ng/mL), peaked at day 2 (24.72 ng/mL), and decreased slightly to 19.28 ng/mL at day 3. Non-transfected BM-MSC (Control) showed no production of hIFNγ protein (Figure 1). Real Time PCR was carried out and mRNA expression levels of hIFNγ in BM-MSC were calculated by comparative C_T method (Table 1). Real Time PCR data analysis showed up regulation of hIFNγ gene in transfected BM-MSC. The mRNA expression of hIFNγ in transfected BM-MSC at 24 h post transfection was 0.66 x 10^3 fold higher when compared to the control BM-MSC (Non-transfected BM-MSC). This mRNA expression was 5.8 x 10^3 fold higher at day 2 and raised up to 12.29 x 10^3 fold.
higher relative to control BM-MSC at day 3 (Figure 2).

Fig 1: Protein expression of human interferon gamma by transfected BM-MSC with pORF-hIFNγ plasmid. Non-transfected BM-MSC served as negative control. *Data are expressed as mean ± SD.

Table 1: Fold change expression of hIFNγ in transfected BM-MSC, calculated by comparative C_T method (ΔΔC_T)

<table>
<thead>
<tr>
<th>Sample</th>
<th>hIFNg Average C_T</th>
<th>ACTB Average C_T</th>
<th>Δ C_T hIFNg - hIFNg</th>
<th>ΔΔC_T (ΔC_T post transfected - ΔC_T untransfected)</th>
<th>Fold difference in hIFNg relative to untransfected BM-MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untransfected BM-MSC</td>
<td>33.11 ± 0.04</td>
<td>24.02 ± 0.04</td>
<td>9.09 ± 0.06</td>
<td>0.00 ± 0.06</td>
<td>1 (0.96-1.04)</td>
</tr>
<tr>
<td>24hr Post-transfection</td>
<td>23.68 ± 0.17</td>
<td>23.91 ± 0.16</td>
<td>-0.23 ± 0.23</td>
<td>-9.32 ± 0.23</td>
<td>660.8 (572.05-749.61)</td>
</tr>
<tr>
<td>48hr Post-transfection</td>
<td>21.71 ± 0.11</td>
<td>25.07 ± 0.37</td>
<td>-3.36 ± 0.39</td>
<td>-12.45 ± 0.39</td>
<td>5801 (4269.94-7332.05)</td>
</tr>
<tr>
<td>72hr Post-transfection</td>
<td>21.83 ± 0.14</td>
<td>26.25 ± 0.45</td>
<td>-4.42 ± 0.47</td>
<td>-13.51 ± 0.47</td>
<td>12290.4 (8422.31-16158.44)</td>
</tr>
</tbody>
</table>

*Data are expressed as mean ± SD.

Table 2: In vitro mRNA expression of human interferon gamma by transfected BM-MSC with plasmid pORF-hIFNγ. *Data are expressed as mean ± SD.
DISCUSSION
In the present study, BM-MSC were successfully isolated and shown to display the biological properties of MSC. Successful transfection efficiency of 64% was obtained by nucleofection with plasmid expressing gene of interest, pORF-hIFNγ, in BM-MSC. Transfected BM-MSC were shown to express hIFN-γ protein and mRNA in vitro.

REFERENCES
Generation of Dendritic-Cell Based Cancer Vaccine for Mouse Acute Myeloid Leukemia

W Y Ng *, M Abdullah **, C F Leong ***, S A W Fadilah ***, S K Cheong ****

*MAKNA-PUKM Cancer Centre, Universiti Kebangsaan Malaysia, **Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, ***Faculty of Medicine, Universiti Kebangsaan Malaysia, **** Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman.

SUMMARY
Dendritic cells (DCs) have the capacity to initiate immune responses, making DC-based vaccination a novel approach in cancer therapy. Bone marrow cells of C57BL/6 mice were cultured in the presence of granulocytes-macrophages colony-stimulating factor (GM-CSF), interleukin-4 (IL-4) and tumour necrosis factor-α (TNF-α) to generate DCs. Generated BMDCs were characterised by flow cytometry analysis. The functionality of DC-based vaccine in inducing T cell proliferation and exerting anti-leukaemic cytotoxicity were evaluated by using CellTiter-Glo Luminescence Cell Viability assay. T cell proliferation was best stimulated by pulsed-BMDCs at a ratio of 1:5. Preliminary studies also showed that murine C1498 AML cell line co-cultured with primed-T cells has lower cell viability.

INTRODUCTION
Dendritic cells (DCs) derived from bone marrow cells are attractive candidates for cancer immunotherapy by virtue of their capacity to initiate immune response. They are specialized antigen-presenting cells that play an essential role in the induction of T cell immunity. These cells possess the unique ability to activate naïve CD4+ and CD8+ T cells in vitro and in vivo. Their capacity in recognising, capturing, processing and presenting antigens to naïve T cells underscores the interest in exploiting DCs to develop immunotherapies for different types of malignancies. Cancer vaccine is developed based on the concept that the induction of tumour antigen-specific T cell immunity would lead to tumour elimination or rejection. Thus, the aim of this work was to develop a DC-based vaccine for murine acute myeloid leukaemia (AML).

MATERIALS AND METHODS
Bone marrow cells were harvested from femurs and tibias of female C57BL/6 mice aged week 6 to 13 and cultured in the presence of granulocytes-macrophages colony-stimulating factor (GM-CSF), interleukin-4 (IL-4) and tumour necrosis factor-α (TNF-α) to generate the DCs. The generated BMDCs were characterised based on their cell surface markers by flow cytometry analysis. AML DC-based vaccine was generated by pulsing of BMDCs with C1498 tumour lysate at the ratio of 3:1 (tumour lysate:DC). The DC-based vaccine functionality, including the capability to induce T cell proliferation and the in vitro anti-leukaemic cytotoxicity, were evaluated by using CellTiter-Glo Luminescence Cell Viability Assay (Promega).

RESULTS

Figure 1: Cell surface expression profiles of mature BMDC from C57BL/6 mice analysed at Day 9. Fluorochrome-labelled mAbs against H-2d, I-A, CD11b, CD11c, CD83, CD86, CD80, CD40, NK1.1, B220, CD8a and CD4 molecules were utilised for FACS analysis.
Figure 2: T-cell stimulatory capacity of tumour lysate-pulsed bone marrow derived dendritic cells (pulsed-BMDCs).

Figure 3: Preliminary data on cytotoxic effect of murine T cells primed by BMDC pulsed with C1498 tumour lysate. The dashed line represents the viability of C1498 murine AML cells co-cultured with unprimed-T cells. The solid line represents the viability of C1498 cells co-cultured with primed-T cells.

DISCUSSION
Mature murine DCs that expressed MHC-II surface marker were able to stimulate vigorous proliferation of T cells \(^5\). Our findings showed that the BMDCs that were generated were able to induce T cell proliferation and could effectively prime T-cells to modestly exert anti-tumour effects on murine AML cell line.

REFERENCES