Combined Laparoscopic and Thoracoscopic Repair of A Large Traumatic Diaphragmatic Hernia: A Case Report

Zubaidah Nor Hanipah, MS*, Azuawarie Amir, MBBS**, Ong Kheng Wah, MS*, Tikfu Gee, MS*

*Department of Surgery, Faculty of Medicine and Health Sciences, University Putra Malaysia, Selangor, Malaysia, **Hospital Serdang, Selangor, Malaysia

INTRODUCTION
Mechanisms of traumatic diaphragmatic hernia have been well described after blunt injury to the chest and abdominal cavity. Diaphragmatic ruptures can occur from 0.8% to 7.0% of blunt abdominal trauma, with left hemidiaphragm involvement the commonest; a ratio of 9:1.1,2 Conventionally, laparotomy is indicated in all patients with other associated injuries in the acute setting. However, when the diagnosis is missed during early post-trauma period, thoracotomy and repair were recommended. In this present era of minimally invasive surgery, laparoscopy is a useful means to treat diaphragmatic rupture even during the acute phase.1,2 Here, we report a case with a delayed large left diaphragmatic hernia that was repaired with a combination of laparoscopic and thoracoscopic approach.

CASE REPORT
A 30 years old gentleman presented to the emergency department with sudden onset breathlessness on exertion. He had a history of left rib fracture due to motor vehicle accident four years ago, but otherwise asymptomatic prior to current complaint. On examination, the left chest had reduced breath sounds and his abdomen was scaphoid but non-tender. Plain chest x-ray showed loops of bowel in the left thorax. Computed tomography of the thorax and abdomen revealed large left diaphragmatic hernia with bowel occupying almost all the left thorax (figure 1).

Elective laparoscopic and thoracoscopic repair of incarcerated diaphragmatic hernia with mesh was performed. He was put in supine position with slightly left sided up. Five trocars were placed; 1x12mm (camera port at infra umbilicus) and 4x5mm (two ports at right upper quadrant, one port at left 4th intercostal space anterior axillary line and another port at the lateral aspect of left upper quadrant).

The omentum, small bowel and transverse colon were found densely adhered into the left hemithorax through the left anterolateral diaphragmatic hernia that measured 10x5 cm (figure 2). A combination of blunt and sharp dissection was used to reduce the hernia content to the abdominal cavity. Thoracoscopic approach was used to release the dense adhesion at the upper lobe of the lung to the left lateral thoracic wall. Upon reduction, the hernia defect was then closed with ethibon 2/0.

Before placing the mesh, the anaesthetist increased the tidal volume to expand the collapsed left lower lobe of the lung and a chest drain size 28F was placed in the left pleural space. Composite mesh 10x15cm was reinforced with secure strap tackers. Portex drain size 27F was placed at left sub-diaphragmatic space.

The patient was then transferred to the intensive care unit (ICU) postoperatively. He was extubated on day one in ICU and on postoperative day two, he was transferred out to the general ward. Chest x-ray immediate post-operative showed expansion of the left lung with minimal pleural effusion. He was discharged on post-operative day six. He recovered well and during clinic follow up to six months, there was no evidence of recurrence or infection.

DISCUSSION
Chronic traumatic diaphragmatic hernia is conventionally repaired using the thoracotomy approach, reduction of intra-abdominal content and closure of the defect primarily. Where else in acute cases, a laparotomy is performed to reduce and repair the diaphragmatic hernia defect. In 1976, thoracoscopy was used to evaluate diaphragmatic injuries.3 Laparoscopy was used in a case series of suspected diaphragmatic injury in 1984.4 Currently, more surgeons prefer to use a thoracoscopic approach to repair chronic diaphragmatic hernias. Here, we have described a combined approach of laparoscopy and
Case Report

Thoracoscopy in repairing a large traumatic diaphragmatic hernia. A combination of approaches enables reduction of large content into abdomen with minimal bleeding and contamination.

The closure of the hernia defect is usually done with simple closure. But in cases of large chronic diaphragmatic hernia, primary closure of the defect is not feasible. Most surgeons report the need of mesh repair for large diaphragmatic defects. Choice and size of the mesh is crucial in any case. We used composite mesh to close the large defect. Other meshes are available as well. Erosion of mesh into the bowel and infection are the major concerns.

Suturing the mesh to the diaphragm is possible, nevertheless, it is hard when the angles are awkward. Endoscopic hernia stapler can also be utilized to close the hernia defect. We fixed the mesh with laparoscopic tackers in our case. Laparoscopic tackers are fast and easy to use, but the only concern when the hernia defect is on the left side and its chronic large defect. The possibilities of injuring the pericardium during inward pressure is present. Hence, tacking the mesh to the edge of hernia has to be done with caution.

CONCLUSION
Laparoscopic approach is safe, feasible and effective in the treatment of large traumatic diaphragmatic hernias. Combination of laparoscopic and thoracoscopic approaches are recommended in difficult large diaphragmatic hernia repair.

REFERENCES

Fig. 1: CT Thorax shows large left diaphragmatic hernia with bowel occupying the left thorax

Fig. 2: Intra-operative picture
Large defect in the left hemi-diaphragm adjacent to the left lobe of liver (10x5cm). Adhesions of the hypotrophic left lung and the intestines indicates chronicity.