Application of Westgard Sigma Multi-Rules as quality assessment tool in clinical research laboratory

Lau Siau Ting¹, Wiwi Tham Nyuk Fong¹, Likong Odealia¹, Gerunsin Jerry¹, Fong Alan Yean Yip^{1,2}, Tiong Lee Len¹

¹Clinical Research Centre, Sarawak General Hospital, Kuching, Sarawak, Malaysia, ²Department of Cardiology, Sarawak Heart Centre, Kota Samarahan, Malaysia

ABSTRACT

Introduction: Multi rule Quality control (QC) has been implemented in laboratories to ensure the reliability of test results in clinical decision-making process. However, a proliferation of all of these rules can result in a lack of coherence in quality. In order to achieve top-notch quality in a clinical research laboratory, it is essential to establish optimal Westgard QC Rules. **Methods:** A retrospective study was conducted on a data set consisting of internal quality control and external quality control of 30 assays collected between January 2021 and June 2022. The sigma metrics (σ CLIA, σ BV) of these assays run on automated haematology analyser (Sysmex XS1000i) and automated dry chemistry analyser (Fuji Dri-Chem NX500) was calculated based on imprecision (CV%), inaccuracy (bias %), total allowable error (TEa) with the formula of Sigma = (TEa-bias)/CV. **Results:** Nine out of 30 assays achieved Six Sigma quality performance, which showed $\sigma \ge 6$. Thirteen assays described σ >3, which met the process performance in a clinical research laboratory setting while the remaining eight assays failed to achieve the minimum six sigma quality performance with metrics less than three. **Conclusion:** Westgard sigma rules are essential for timely error detection and scrutinize between the two most common sources of error; bias and imprecision. This serves as a gold standard for obtaining high quality test.