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ABSTRACT 
Introduction: Magnetic resonance spectroscopy (MRS) has 
an emerging role as a neuroimaging tool for the detection of 
biomarkers of Alzheimer’s disease (AD). To date, MRS has 
been established as one of the diagnostic tools for various 
diseases such as breast cancer and fatty liver, as well as 
brain tumours. However, its utility in neurodegenerative 
diseases is still in the experimental stages. The potential 
role of the modality has not been fully explored, as there is 
diverse information regarding the aberrations in the brain 
metabolites caused by normal ageing versus 
neurodegenerative disorders.  
  
Materials and Methods: A literature search was carried out to 
gather eligible studies from the following widely sourced 
electronic databases such as Scopus, PubMed and Google 
Scholar using the combination of the following keywords: 
AD, MRS, brain metabolites, deep learning (DL), machine 
learning (ML) and artificial intelligence (AI); having the aim 
of taking the readers through the advancements in the 
usage of MRS analysis and related AI applications for the 
detection of AD.   
 
Results: We elaborate on the MRS data acquisition, 
processing, analysis, and interpretation techniques. 
Recommendation is made for MRS parameters that can 
obtain the best quality spectrum for fingerprinting the brain 
metabolomics composition in AD. Furthermore, we 
summarise ML and DL techniques that have been utilised to 
estimate the uncertainty in the machine-predicted 
metabolite content, as well as streamline the process of 
displaying results of metabolites derangement that occurs 
as part of ageing.   
 
Conclusion: MRS has a role as a non-invasive tool for the 
detection of brain metabolite biomarkers that indicate brain 
metabolic health, which can be integral in the management 
of AD.  
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INTRODUCTION 
Alzheimer’s disease (AD) is a major neurodegenerative 
disorder and has been cited as the most common type of 
dementia in the Western population.1 A study by Ibrahim, et 
al.2 reported that vascular dementia and mixed dementia 
were more prevalent in Malaysia and Asian countries based 
on their survey at a tertiary public hospital in Kuala Lumpur, 
Malaysia. In view of mixed clinical findings, there is a need 
for advanced diagnostic imaging to provide further 
information to help characterise the type of dementia.  
  
Conventionally, structural magnetic resonance imaging 
(MRI) is used to help diagnose AD with the support of clinical 
assessment and neuropsychological testing. A common 
finding in conventional MRI is the detection of accelerated 
brain atrophy in AD.3 Furthermore, brain morphometry and 
seed-based analysis of resting-state fMRI (functional MRI) 
functional connectivity revealed that there were 
abnormalities in the default mode network of AD patients 
compared to healthy control subjects.4  
 
Typical MRI findings in AD patients is a decline in both white 
matter (WM) volume and grey matter (GM) volume 
specifically beginning in the hippocampus, which becomes 
accelerated in this condition.5 One of the limitations of 
structural MRI is that the detection of anatomical changes of 
neurodegeneration as evidenced by brain atrophy occurs 
later in the disease.6 Thus, newer biomarkers using hybrid 
functional imaging such as positron emission tomography/ 
computed tomography (PET/CT) are utilized to aid in the 
early detection and better characterization of AD.  
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Radiopharmaceuticals utilized for PET/CT imaging in 
patients suspected of AD consist of two main categories, i.e., 
glucose-analogue tracers and amyloid protein tracers. 
Initially, 2-Deoxy-2-[18F] fluorodeoxyglucose ([18F]-FDG), a 
glucose analogue was utilised for PET/CT brain imaging, 
then followed by amyloid and tau protein PET/CT imaging, 
for the management of AD.7 Although the role of [18F]-FDG 
has been established for making the diagnosis of AD, the 
accuracy of the scan interpretations can decline markedly 
when it involves younger patients or when there are 
overlapping features with other types of dementia.   
 
Consequently, this limitation was the catalyst for the 
development of more specific biomarkers, namely amyloid 
precursors. The detection of amyloid precursors is said to be 
able to predict the conversion of at-risk subjects to full-blown 
AD 10 years earlier than the onset of AD symptoms.8 Further 
review of amyloid PET/CT imaging concluded that this 
diagnostic tool holds promise for a beneficial role in 
diagnosing AD in cases of inconclusive clinical findings; 
however, there is an inherent limitation to this modality.8  
 
These limitations include its cost-effectiveness, involving 
ionising radiation, and practical concerns for its execution 
due to many variations in protocols and cut-off values for the 
interpretation of results.9 Among the recent advances in MRI 
technology and applications, the utility of magnetic 
resonance spectroscopy (MRS) has been gaining momentum 
for improved diagnostic accuracy.  
 
In vivo, MRS is a non-invasive tool for characterising 
alterations in metabolite concentration and, by extension, 
bioenergetic and metabolic dysfunction associated with 
neurodegenerative disease progression.10 There is a need to 
standardise the application of MRS techniques for the 
diagnosis of AD to help detect the alterations in brain 
metabolite levels in AD patients.  
 
Additionally, artificial intelligence (AI) has spiked in 
popularity in recent years including its usage in the medical 
imaging field. AI has led to the development of automated 
image classification, segmentation, super-resolution, and 
image reconstruction.11 Several classes of AI have been 
studied extensively, including machine learning (ML) and 
deep learning (DL), which utilise artificial neural networks 
(NN) inspired by neuronal architectures.12 
 
This review aims to report on the advancement in the usage 
of MRS analysis and MRS-related AI applications for the 
detection of AD. Our specific aim is to probe into the patterns 
of metabolite changes in the brain that represent neural 
inflammation and degeneration related to AD, as well as to 
explore the automated analysis of MRS data using AI. A 
literature search was carried out to gather eligible studies 
from the following widely sourced electronic databases such 
as Scopus, PubMed, and Google Scholar. The search was 
conducted to gather all relevant publications till August 
2023.   
 
Besides, to achieve a wider search, all relevant studies were 
further cross-referenced for potentially eligible studies 

through their bibliography. Using Boolean operators, i.e., 
“AND” and “OR,” the following search terms were entered in 
the search engines of the above listed electronic databases. 
The keywords used were AD, MRS, brain metabolites, DL, ML, 
and AI.   
 
MRS Data Acquisition  
MRS utilises magnetic resonant signals obtained from a 
volume of interest (VOI) and performs a fast Fourier 
transform (FFT) to identify the types and concentrations of 
each metabolite within the frequency domain, i.e., the MR 
spectrum. Based on whether the signal is captured from a 
single voxel or multiple voxels, it is technically categorised as 
single voxel spectroscopy (SVS) or MR spectroscopic imaging 
(MRSI). The MR spectrum generally consists of metabolites, 
water, lipids, and mobile and immobile proteins within the 
tissue.  
 
Each component demonstrates unique chemical shift (ppm) 
and J-coupling (Hz) properties based on their respective MR 
characteristics. This occurs via the Zeeman effect, shielding 
effects, and Fermi contact of the molecular structure, and can 
thus be distinguished within the MR spectrum.13 In MRS, a 
specific VOI is selected from the anatomical image and a 
spectrum is collected. The spectrum has different peaks or 
signals from many different metabolites in brain tissue.  
 
Each of the peaks is highly reproducible and unique. Hence, 
it helps to identify the specific metabolites that correspond to 
specific signals. The difference in frequencies occurs due to 
electron shielding.   
 
There are two main sequences in MRS, namely the STEAM 
and PRESS sequences. In the “STEAM” sequence, three 
identical 90° excitation pulses are used to form a “stimulated 
echo” while the “PRESS” sequence uses one 90° excitation 
and two identical 180° refocusing pulses to create a “spin 
echo”, which is also known as double spin echo. A 
comparison of these two techniques has been done, and the 
most obvious difference is that the spin echo-based PRESS 
sequence acquires double the signal-to-noise ratio (SNR) 
compared to STEAM, hence, it is often preferred in clinical 
field strength.  
 
As the repetition time (TR) increases, the scan time required 
for MRS data acquisition also significantly increases, leading 
to unwanted additional data artefacts such as patient 
movement.14 Hence, a compromise is made by performing 
approximately 2 – 3 pre-scans prior to the main MRS data 
acquisition to make the magnetisation of the metabolites to 
a steady state, and then data is repeatedly collected.15 The TR 
commonly used at 3T is 2000 ms.  
 
Time to echo (TE) is the duration from RF excitation for 
spatial localization to the resonance signal produced in the 
target voxel and is one of the important parameters that 
characterize the MRS signal. In the clinical use of MRS, the 
shortest TE (~30 ms at 3T, for PRESS) is commonly used.16 This 
allows for the anticipation of high signal yields of all 
metabolites in the brain while minimising the T2-effects and 
J-evolution of each metabolite.  
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Software                 Language                Fitting domain              Baseline approach                           Basis set preparation 
LCModel32                  Fortran               Frequency Domain               Spline baseline                     Pre-prepared basis set utilization  
                                                                                                                                                  Cannot be custom-built within the program  
Tarquin28                      C++                      Time Domain                  Smooth baseline                   Pre-prepared basis set utilization  
                                                                                                                                                  Cannot be custom-built within the program  
Osprey29                    MATLAB              Frequency Domain               Spline baseline                     Pre-prepared basis set utilization  
                                                                                                                                                  Cannot be custom-built within the program  
Vespa30                       Python               Frequency Domain             Wavelet baseline                   Can be built within the program  
                                                                                                                                                                             (Simulation)   
INSPECTOR31             MATLAB              Frequency Domain          Polynomial baseline                 Can be built within the program  
jMRUI-QUEST32            Java                      Time Domain                 Truncated points            Can be built within the program and has  
                                                                                                                                                            user-friendly graphical interface  
 
LCModel: Linear Combination Model, MATLAB: MATrix LABoratory by MathWorks, Inc., jMRUI-QUEST: Java-based graphical user interface magnetic 
resonance spectroscopy user interface quantification simultor algorithm, VESPA: Versatile Simulation Pulses Analysis  

Table I: Technical features of MRS data analysis softwares

No 
1 
 
 
 
 
 
 
2  
 
 
 
 
3  
 
 
 
 
 
4 

Author (Year)  
Munteanu et al., 
201542 
 
 
 
 
 
Ahmed et al., 
202043 
 
 
 
Kherchouche et 
al., 202244 
 
 
 
 
Wang, et al., 
202245  

ML/DL  
ML 
 
 
 
 
 
 
DL  
 
 
 
 
DL  
 
 
 
 
 
DL  

Subjects, (N)   
HC (79),  
AD (56)   
 
 
 
 
 
HC (79),  
AD (56) 
 
 
 
HC (33),  
MCI (49),  
AD (29)  
 
 
 
AD (27),  
HC (15)  
 

Objective  
To test and evaluate the 
effectiveness of machine-
learning schemes for single-
subject level classification of 
individuals affected by different 
stages of dementia (HC, MCI, 
and AD) based on 1H-MRS data.  
To propose an end-to-end deep 
learning network for early AD 
and HC classification using 1H-
MRS raw data from the PCC 
area 
To propose an explainable 
classification framework for 
early AD detection using 1H-
MRS  
 
 
To improve the diagnosis and 
classification of AD using a 
model combining MRI and MRS 
metabolite levels at the frontal 
and parietal regions.    

Outcome  
Composition of WM, GM, and CSF of the 
spectroscopic voxel is essential in a 1H-MRS study 
to improve the accuracy of the quantifications 
and classifications, e.g., metabolite 
derangements were matched to regions of 
decreased GM in the hippocampus of AD 
subjects.  
Classification of metabolite features in PCC of 
patients with early AD compared to HC using 
Deep MRS algorithm, achieved AUC of approx. 
94% for AD, with a sensitivity of 100% and a 
specificity of approx. 89%. 
Accuracy of 82% for the most challenging 
classification task (MCI vs. AD classification).  
 
 
 
 
GABA levels in the parietal region correlated 
with MMSE scores of AD, and resulted in the 
most significant improvement in model 
performance, the AUC increased from 0.97 to 
0.99, specificity increased from 90 to 95%. 

Table II: MRS-based AI classification models for Alzheimer’s disease and MCI

AD: Alzheimer’s disease, AUC: area under the curve, DL: deep learning, GABA: gamma-aminobutyric acid, GM: gray matter, HC: healthy control, 1H-MRS: 
proton magnetic resonance spectroscopy, MCI: mild cognitive impairment, ML: machine learning, MMSE: mini mental state examination 

These factors work together to increase the overall SNR of the 
MRS signal, enabling complex metabolite profiling.17 This is 
an advantage when compared to spectral-edited MRS 
methods using a longer TE. In AD, the commonly targeted 
VOI is the posterior cingulate cortex (PCC) and the precuneus 
because these two regions have been found to exhibit cortical 
thinning on structural MRI,18 reduced glucose metabolism on 
PET/CT imaging and histopathological changes on brain 
autopsy.19 
 
Even though SVS can be performed quickly and easily in most 
parts of the human brain, it only captures metabolite 
information in a specific brain region and does not provide 
spatial variations of metabolites in other parts of the brain. 
Information is generally only limited to one or two brain 
regions in most clinical settings. Conversely, MRSI is usually 
more time-consuming, but can be used to measure multiple-
voxel locations simultaneously. It has a larger total coverage, 
hence, higher spatial information.  

Advantageously, 1H MRS has a high sensitivity, however, it 
also has the drawback of having a large water signal. This 
has to be suppressed to allow for the observation of tissue 
metabolites that are relatively smaller in representation.20 

Commonly in 1H MRS, brain metabolites are observed in the 
millimolar concentration range, while cerebral water makes 
up 65-75% of the brain composition.  
 
MRS Data Processing and Analysis  
Generally, the post-acquisition workflow of SVS MRS involves 
a sequence of steps: 1) pre-processing for data correction, 2) 
performing metabolite quantification, and 3) data screening 
for error estimation to quantify the results. The main reason 
for pre-processing in MRS is due to the inevitable degradation 
caused by experimental imperfections such as RF slice profile 
imperfections, eddy currents, frequency drift, and subject 
motion.  
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Secondly, raw data are usually multi-dimensional, with 
multiple signal averages acquired by multiple coil channels 
from parallel receive array coils. Therefore, these signals must 
be combined to reduce the data into one dimensional single 
complex-valued data to be analysed. Before conducting 
quantitative analysis, MRS data, once merged, may undergo 
several pre-processing steps depending on the quality of the 
data.  
 
For example, spectral distortions due to eddy currents are 
typically corrected using water-unsuppressed data.21 

Additional data correction may be necessary if there are 
severe frequency shifts or zeroth or first-order phase shifts.22  

SNR or spectral resolution of the MR spectrum can be 
artificially enhanced using post-processing methods, such as 
apodisation and zero-filling techniques, respectively. 
However, the former may fail to reflect the line shape 
characteristics of each metabolite signal due to their 
respective T2 characteristics and can ultimately influence the 
results of metabolite quantification.16  
 
The zero-filling technique remains controversial in terms of 
improvements in data quantification.23 Therefore, these two 
functions for improving the SNR are generally used to assist 
in improving visual interpretation.24 A range of software is 
available to perform quantitative analysis, which provides 

Fig. 1: Proton MR spectrum acquired at 3.0 T (TE=30 ms) of healthy older adult subject. Reproduced, with permission, from Lee.26 

Fig. 2: Representative spectra of a metabolite basis set and quantification process. A metabolite basis set (A) incorporates chemical 
shifts, J-coupling, and line shapes of expected metabolites. The basis set is used for metabolite quantification from in vivo MR 
spectrum with spectral baseline (B). Reproduced, with permission, from Lee.26
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high reproducibility. Nevertheless, caution needs to be 
exercised when comparing data from multicentre studies 
acquired using non-standardized protocols. Moreover, robust 
statistical analysis using AI could be hindered by data 
obtained from inferior software.  
 
A point to consider is that the concentration of metabolites 
acquired using MRS is linearly proportional to the spectral 
peak area.25 Under typical clinical MRS scan conditions (3T, 
using the shortest TE), there is bound to be overlap among 
metabolite spectra, including broad spectral overlap between 
metabolites and macromolecules in the baseline spectra. An 
example of a normal metabolites spectrum in healthy older 
adults generally has a tall N-acetyl aspartic acid (NAA) 
peak,26 with some slight overlap of other metabolites that 
occur in lower concentrations (Figure 1).  
  
Therefore, analysis methods based on the non-linear least 
squares fitting (NLSF) algorithm have been developed to 
address these problems, and the most common method is the 
Linear Combination (LC) Model proposed by Provencher et 
al.27 (Figure 2). The model lays the in vivo spectrum as a 
fusion of pure, model spectra from each of the expected 
compounds in the brain.  
 
The model also accommodates automatic phase and 
frequency correction and baseline correction. With the proper 
adjustment of each scanner and by using correct model 
solutions, the program returns metabolite concentrations 

(relative to an unsuppressed water signal or other internal 
metabolite references such as total creatine (tCr = creatine 
(Cr) + phosphocreatine (PCr)) or total choline (tCho = 
glycerophosphocholine (GPC) + phosphocholine (PCh)) as 
well as estimates of ambiguity.27 
 
In NLSF, each metabolite’s input to the overall spectrum is 
modelled as a single response function called the “basis set”. 
Along with the LC Model, the development of software based 
on the NLSF algorithm has been steadily ongoing, and the 
following are representative examples: Tarquin,28 Osprey,29 
Vespa,30 INSPECTOR,31 and jMRUI-QUEST among others have 
been designed by Graveron-Demilly,32 Oeltzschner et al.,33 
Soher et al.,30 Gajdošík et al.,34 and Jabłoński et al.35 as shown 
in Table I. 
 
While attempts have been made to develop techniques for 
metabolite quantification and to apply MRS clinically, there 
are several limitations that make it difficult to use as a 
clinical tool. Specifically, the standard deviation of 
quantification results based on Cramér–Rao Lower Bound 
(CRLB) is commonly used as an error estimation indicator for 
quality control (QC) of results obtained using the NLSF 
method.  
 
For example, according to the LCModel, it is not 
recommended to use results with a CRLB of 20% or more for 
statistics.36 However, such CRLB-based QC can 
unintentionally lead to statistical bias, and furthermore, the 

Fig. 3: A midsagittal T1-weighted image of the brain of a healthy volunteer. A 2 x 2 x 2 cm3 voxel placement in the PCC/Prec is shown 
in A. The difference in proton spectra and metabolites obtained from the region in healthy control and AD patients are shown 
in B and C. Notably, there is a significant decrease in the NAA peak in the AD subject. (This figure was reused with permission 
from ethical clearance received from our institutional ethical committee, reference number JKEUPM-2019-328 and Malaysian 
national ethical clearance number MREC (NMRR-19-2719-49105)).
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CRLB itself does not directly reflect the absolute error of 
quantification.37 Additionally, there are large discrepancies in 
the analysis results between different software using various 
NLSF algorithm methods. 
 
AI in Quantitative MRS Analysis.  
The benefits of using AI have been widely discussed in the 
medical literature.38 By using AI algorithms that resemble the 
network of neurons of the human brain, DL has been able to 
demonstrate excellent capability in pattern identification 
and denoising, thus providing a good-quality image for 
disease diagnosis, especially in AD. To address the technical 
issues in MRS analysis along with advances in AI, recent 
efforts in the MRS field have attempted to develop metabolite 
quantification techniques based on DL and ML.  
 
Technically, various algorithms based on random forest,39 
autoencoder-based,40 conventional convolutional neural 
network (CNN),41 and Bayesian (BNN) have been developed, 
suggesting the feasibility of MRS analysis in clinical settings 
through these technical developments. On the other hand, 
one of the most significant technical challenges in applying 
ML/DL is to provide “uncertainty information” about the 
real-world data targeted inferences of the pre-trained model, 
allowing users to perform QC on the actual predicted 
quantification results.  
 
Nevertheless, quantitative research achievements still lack 
empirical data on various diseases. Hence, further research is 
required to make MRS-based metabolite quantification 
potentially useful in a wide range of diverse clinical 
applications with the aid of ML/DL in the future.  
 
AI in MRS for the Classification of Alzheimer's Disease 
Patients.  
The use of AI techniques to improve MRS quantification has 
been increasingly adopted, along with the application of 
ML/DL for the classification of patients with cognitive 
impairment using MRS data by Munteanu et al.,42 Ahmed et 
al.,43 Kherchouche et al.,44 and Wang et al.45 as shown in 
Table II. The application of ML/DL in MRS can provide a 
potential avenue for early detection and treatment of 
dementia. For example, in the pioneering study by 
Munteanu et al., which was an MRS-AI-based classification 
of AD, multilayer perceptron was used on MRS data of 260 
older adults, and the results extracted features such as 
metabolite derangements in the hippocampus that were 
similar to those of previous studies using structural MRI 
data.42  
 
Recently, the development of end-to-end deep CNNs by 
Ahmed et al. and Kherchouche et al. have further advanced 
the field of dementia disease detection.43,44 These types of CNN 
models have been able to accurately detect the presence of 
dementias using MRS data, suggesting that DL can be a 
powerful diagnostic tool by achieving 93.3% accuracy in 135 
subjects (AD: 56, healthy control (HC): 79)43 and 94% 
accuracy in normal and mild AD group and even 90% 
accuracy in normal and mild cognitive impairment (MCI) 
group in the diagnosis of these conditions.44 
 
 

Furthermore, a study conducted by Wang et al.45 
demonstrated the effectiveness of classifying dementia 
patients by using both MRS and structural MRI data, 
achieving an accuracy rate of 96% to 98%, depending on the 
feature domain characteristics used in the classification. 
Hence, a noticeable focus lies in enhancing the accuracy of 
classifiers, limited by little to no discussion on 
generalisability, MRS data quality control, or broad 
applicability. Unfortunately, many studies employ 
analogous model architectures with scant comparisons 
between model structures.  
 
Consequently, there is a need for multidisciplinary integrated 
research using ML/DL that not only improves the accuracy of 
metabolite quantification results inherent in MRS data but 
can also distinguish and link the severity of cognitive 
impairment with the pattern of the spectral data.  
 
MRS Data Interpretation 
Multiple metabolites are detectable at 1.5 or 3T with 1H MRS 
in a normal human brain, including the prominent 
resonances of total NAA (tNAA), total creatine (tCr), total 
choline (tCho), and signals from myo-inositol (mI), 
glutamate and glutamine (Glx). Lactate is not usually seen in 
normal brains but is detectable in pathologies that cause its 
concentration to increase such as in brain abscesses and 
necrotic tissue.17,46 Moreover, using MRS, one can detect 
characteristic patterns for AD because it has a unique 
metabolite pattern compared to other dementias when 
regional differences are taken into consideration.47 
 
Total N-Acetyl-Aspartate  
Total N-acetyl-aspartate (tNAA) is the largest metabolite 
signal in the spectrum26 and is made up of the sum of N-
acetyl-aspartate (NAA) and N-acetyl-aspartatyl-glutamate 
(NAAG). A very prominent signal at 2.01 ppm is usually 
shown by NAA corresponding to its methyl group.20 
“Neuronal marker,” is another name given for NAA. This is 
because immunocytochemical studies have suggested that 
NAA is mostly tethered to the neurons, axons, and dendrites 
within the central nervous system. The decrease in NAA is 
one of the main findings in AD,48 which is attributed to the 
loss of neuronal integrity that occurs in cells that undergo 
neuroinflammation and degeneration, as can be seen in 
Figure 3.   
 
The most common VOI detected for the reduction of NAA has 
been reported in the medial temporal lobe, hippocampi, and 
PCC.48 Even though NAA reduction is a well-known 
observation in AD, the outcome or findings are not consistent 
with those subjects having MCI, which is the prodromal stage 
of AD. Several studies claimed significant similarities between 
MCI cases and AD, whereas other studies found a significant 
difference between MCI and AD but not between MCI and 
HC.49 
 
Total Creatine  
Other than that, total Creatine (tCr) (3.01-ppm singlet and 
~3.9-ppm singlet) arise from methyl and methylene group, 
respectively and is made up of the sum of creatine (Cr) and 
phosphocreatine (PCr), also known as energy metabolites. tCr 
is commonly used as an “internal reference” to quantify 
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other neurochemicals.26 In a normal healthy brain, the level 
of tCr is found lower in WM compared to GM. Moreover, a 
greater level of tCr is found in the cerebellum in comparison 
with the supratentorial regions.  
 
Total Choline  
Referred to as choline-containing compounds (tCho) (3.21 
ppm singlet arise from three identical methyl groups) in the 
human brain, it is involved in phospholipid synthesis and 
degradation, reflecting cell membrane turnover. tCho is 
mainly composed of Glycerophosphocholine (GPC) and 
Phosphocholine (PCh) and plays different functional roles in 
cell membrane formation and degradation. However, so far, 
there have been no consistent reports on the changes in Cho 
in either AD or MCI.  
 
Myo-Inositol  
Another commonly detected metabolite is myo-Inositol (mI). 
This metabolite produces one of the larger and strong 
coupled signals in short echo time spectra, which produces a 
signal at 3.5–3.6ppm. mI is much more abundant in glial 
cells as compared to neurons, and therefore it is increased in 
association with an increase in the glial component. Several 
recent studies related to MRS focused on MCI and AD have 
shown abnormal mI metabolite profiles. For example, a 
meta-analysis of MC and AD indicated decreased NAA and 
increased mI levels associated with MCI and AD, 
respectively.49 Besides, NAA reduction and mI increase in AD 
compared to MCI and HC have also been detected, and this 
contributes to an increase in specificity and accuracy of the 
clinical diagnosis (100% for distinguishing AD from HC).50 
 
Glutamate and Glutamine  
Glutamate (Glu) and glutamine (Gln) (2.1–2.4- and 3.7-ppm 
multiplets) metabolites are complex (Glx = Glu + Gln); hence, 
their peaks are difficult to be distinguished, both from each 
other and from other compounds.  At higher magnetic fields, 
like those used in preclinical studies, they can sometimes be 
resolved, depending on the spectral quality, but in general, it 
is difficult to obtain reliable measurements of these 
metabolites separately.20 The most common brain region that 
shows a reduction in the level of Glx in AD is the anterior 
cingulate cortex, hippocampi, medial temporal lobe, and 
PCC.49 
 
γ-Aminobutyric Acid and Glutathione  
The primary inhibitory neurotransmitter in the brain is 
known as γ-aminobutyric acid (GABA) (1.9-, 2.3-, and 3.0-
ppm multiplets). Due to the nature of the metabolites such as 
being very small and/or having overlapping peaks they are 
very hard to be detected routinely.26 The concentration of 
GABA and glutathione in a normal brain are at relatively 
low levels (1.3–1.9 mmol/ kg weight),13 which could also be a 
contributing factor to the difficulty of peak detection. Both 
GABA and Glutathione (GSH) have been reported to be 
observed at lower concentrations in AD compared to 
cognitively normal controls.  
 
Metabolite Ratio (Semi-Quantitative Method)  
Metabolite ratios have some instinctive benefits, such as 
accounting for partial volume effects or enhancing 
spectroscopic “contrast” in conditions where metabolites may 

change in opposite directions (e.g., tCho increases, tNAA 
decreases), however, the ratios may become inaccurate if all 
the metabolites are changing simultaneously.26 The 
metabolite ratios that we commonly refer to are tNAA/tCr, 
tCho/tCr, mI/tCr, mI/tNAA, tNAA/mI, and Glx/tCr. AD 
patients exhibited a regional decrease in tNAA/tCr in the 
PCC and superior temporal lobe, and this reduction in 
demented patients compared with controls is due to the 
accelerated axonal damage.50 Most of the previous research 
on AD and MCI have reported tNAA/tCr ratios to be 
consistently decreased.50 
 
The reduction is caused by neuronal loss in addition to non-
structural and physiological changes associated with 
impaired mitochondrial activity. Common findings in 
metabolite ratio for AD diagnosis are an increase in mI/tCr in 
AD followed by a decrease in tNAA/tCr and an increase in 
the ratio in tCho/tCr.50 In addition, a systematic review done 
by Piersson et al.50 had concluded that alterations in 
tNAA/tCr, tNAA/ml, and ml/tCr ratio may be potentially 
useful biomarkers that may highlight functional changes in 
the clinical stages of AD.  
 
Automated Analysis of MRS Spectra  
ML and DL have the potential to control spectral quality 
management and metabolite quantification, providing an 
automated analysis of MRS data. A study by Lee et al.41 which 
was designed to develop a method for metabolite 
quantification with simultaneous measurement uncertainty 
estimation in DL-based 1H-MRS of rat’s brains concluded that 
this method can be used for non-invasive metabolomics 
without additional data post-processing such as spectral 
fitting. They further stated that DL has great potential for the 
quantification of brain metabolites using 1H MRS data. 
 
 
REFERENCES 
1. Alzheimer’s Association.  2021 Alzheimer’s disease facts and 

figures. Alzheimer’s Dement 2021; 17: 327–406.  
2. Ibrahim B, Suppiah S, Piersson AD, Razali RM, Mohamad M, 

Abu Hassan H, et al. Cardiovascular risk factors of Alzheimer's 
disease and other neurocognitive disorders in Malaysia. Med J 
Malaysia 2021; 76(3): 291-97.  

3. Park M, Moon WJ. Structural MR imaging in the diagnosis of 
Alzheimer's disease and other neurodegenerative dementia: 
current imaging approach and future perspectives. Korean J 
Radiol 2016; 17(6): 827-45. 

4. Azmi NM, Suppiah S, Ibrahim NS, Ibrahim B, Seriramulu VP, 
Piersson AD, et al. Brain morphometry and seed-based analysis 
of resting-state functional connectivity in default mode network 
of Alzheimer's disease patients compared with healthy control 
subjects in the Klang Valley, Malaysia. J Imaging Radiat Sci 
2022; 53(4): S27.  

5. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology 
and the clinical role imaging will play. Radiol 2012; 263(2): 344-
61.  

6. Murray ME, Przybelski SA, Lesnick TG, Liesinger AM, Spychalla 
A, Zhang B, et al. Early Alzheimer's disease neuropathology 
detected by proton MR spectroscopy. J Neurosci 2014 
3;34(49):16247-55.  

7. Aziz SA, Ling LJ, Saad FF, Nordin AJ, Ibrahim N, Nuruddin A, et 
al. Voxel-wise analysis of 18F-fluorodeoxyglucose metabolism in 
correlation with variations in the presentation of Alzheimer's 
disease: a clinician's guide. Med J Indon 2019; 28(3): 300-8.  

 
 

16-Review00262.qxp_3-PRIMARY.qxd  29/01/2024  2:30 PM  Page 108



Review of MR spectroscopy analysis and artificial intelligence applications 

Med J Malaysia Vol 79 No 1 January 2024                                                                                                                                                   109 

8. Suppiah S, Didier MA, Vinjamuri S. The who, when, why, and 
how of PET amyloid imaging in management of Alzheimer's 
disease-review of literature and interesting images. Diagnostics 
MDPI (Basel) 2019; 9(2): 65.  

9. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, 
Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s 
disease: Recommendations from the National Institute on Aging-
Alzheimer’s Association workgroups on diagnostic guidelines for 
Alzheimer's disease. Alzheimer's & dement 2011 1;7(3):263-9.  

10. Duarte JM, Lei H, Mlynárik V, Gruetter R. The neurochemical 
profile quantified by in vivo 1H NMR spectroscopy. Neuroimage. 
2012; 61(2): 342-62.  

11. Johnson PM, Recht MP, Knoll F. Improving the speed of MRI with 
artificial intelligence. Semin Musculoskelet Radiol 2020; 24(1): 
12-20.   

12. Hassabis D, Kumaran D, Summerfield C, Botvinick M. 
Neuroscience-inspired artificial intelligence. Neuron 2017; 95(2): 
245-58.   

13. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical 
shifts and coupling constants for brain metabolites. NMR Biomed 
2000; 13(3): 129-53.   

14. Kreis R, Boer V, Choi IY, Cudalbu C, de Graaf RA, Gasparovic C, 
et al. Terminology and concepts for the characterization of in 
vivo MR spectroscopy methods and MR spectra: Background and 
experts' consensus recommendations. NMR in Biomed 
2021;34(5):e4347.   

15. Freeman R, Hill HDW. High‐resolution studies of nuclear spin–
lattice relaxation. Chem Phys 1969; 51.7: 3140-1.   

16. Wilson M, Andronesi O, Barker PB, Bartha R, Bizzi A, Bolan PJ, et 
al. Methodological consensus on clinical proton MRS of the 
brain: Review and recommendations. Magn Reson Med 
2019;82(2):527-50.   

17. Gao F, Barker PB. Various MRS application tools for Alzheimer 
disease and mild cognitive impairment.  Am J Neuroradiol 2014; 
35(6 Suppl): S4-11.   

18. Lehmann M, Rohrer JD, Clarkson MJ, Ridgway GR, Scahill RI, 
Modat M, et al. Reduced cortical thickness in the posterior 
cingulate gyrus is characteristic of both typical and atypical 
Alzheimer's disease. J Alzheimer's Dis 2010;1;20(2):587-98.   

19. Braak H, Braak E. Neuropathological stageing of Alzheimer-
related changes. Acta Neuropathol 1991; 82(4): 239-59.    

20. Muñoz-Hernández MC, García-Martín ML. In Vivo 1H magnetic 
resonance spectroscopy. Methods Mol Biol 2018; 1718: 151-67.   

21. Klose U. In vivo proton spectroscopy in presence of eddy 
currents. Magn Reson Med 1990; 14(1): 26-30.  

22. Near J, Edden R, Evans CJ, Paquin R, Harris A, Jezzard P. 
Frequency and phase drift correction of magnetic resonance 
spectroscopy data by spectral registration in the time 
domain. Magn Reson Med 2015; 73(1):44-50.  

23. Murali-Manohar S, Oeltzschner G, Barker PB, Edden RAE. The 
value of zero-filling in in vivo MRS. J Magn Reson Imaging 2022; 
93: 1.   

24. Near J, Harris AD, Juchem C, Kreis R, Marjańska M, Öz G, t al. 
Preprocessing, analysis and quantification in single‐voxel 
magnetic resonance spectroscopy: experts' consensus 
recommendations. NMR in Biomed 2021;34(5):e4257.  

25. Prichard JW, Shulman RG. NMR spectroscopy of brain 
metabolism in vivo. Annu Rev Neurosci 1986; 9: 61-85.  

26. Lee HH. "Deep Learning-based Metabolite Quantification in 
Proton Magnetic Resonance Spectroscopy of the Brain." [Doctoral 
Dissertation]. Seoul National University (2022).  

27. Provencher SW. Estimation of metabolite concentrations from 
localized in vivo proton NMR spectra. Magn Reson Med 1993; 
30(6): 672-9.  

28. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC. A 
constrained least-squares approach to the automated 
quantitation of in vivo ¹H magnetic resonance spectroscopy 
data. Magn Reson Med 2011; 65(1): 1-12.  

29. Oeltzschner G, Zöllner HJ, Hui SCN, et al. Osprey: Open-source 
processing, reconstruction & estimation of magnetic resonance 
spectroscopy data. J Neurosci Methods 2020; 343: 108827.  

30. Soher BJ, Semanchuk P, Todd D, Ji X, Deelchand D, Joers J, et al. 
VeSPA: integrated applications for RF pulse design, spectral 
simulation and MRS data analysis. Magn Reson Med 
2023;90(3):823-38.  

31. Gajdošík M, Landheer K, Swanberg KM, Juchem C. INSPECTOR: 
free software for magnetic resonance spectroscopy data 
inspection, processing, simulation and analysis. Sci Rep 2021; 
11(1): 2094.  

32. Graveron-Demilly D. Quantification in magnetic resonance 
spectroscopy based on semi-parametric approaches. MAGMA 
2014; 27:113-30.  

33. Oeltzschner G, Zöllner HJ, Hui SCN, Mikkelsen M, Saleh MG, 
Tapper S, ET AL. Osprey: Open-source processing, reconstruction 
& estimation of magnetic resonance spectroscopy data. J 
Neurosci Methods 2020; 1; 343:108827.  

34. Gajdošík M, Landheer K, Swanberg KM, Juchem C. INSPECTOR: 
free software for magnetic resonance spectroscopy data 
inspection, processing, simulation and analysis. Sci Rep 11, 2094 
(2021). https://doi.org/10.1038/s41598-021-81193-9  

35. Jabłoński M, Starčuková J, Starčuk Z Jr. Processing tracking in 
jMRUI software for magnetic resonance spectra quantitation 
reproducibility assurance. BMC Bioinformatics. 2017 Jan 
23;18(1):56.  

36. Provencher SW. LCModel & LCMgui user’s manual. LCModel 
version. 2014; 6(3). 

37. Kreis R. The trouble with quality filtering based on relative 
Cramér-Rao lower bounds. Magn Reson Med 2016; 75(1): 15-8.  

38. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and 
cardiac imaging: harnessing big data and advanced computing 
to provide personalized medical diagnosis and treatment. Curr 
Cardiol Rep 2014; 16(1): 441.  

39. Das D, Coello E, Schulte RF, Menze BH. Quantification of 
metabolites in magnetic resonance spectroscopic imaging using 
machine learning. In: Medical Image Computing and Computer 
Assisted Intervention− MICCAI 2017: 20th International 
Conference, Quebec City, QC, Canada, September 11–-13, 2017, 
Proceedings, Part III 20 2017 (pp. 462–-470). Springer 
International Publishing.  

40. Gurbani SS, Schreibmann E, Maudsley AA, Cordova JS, Soher BJ, 
Poptani H, et al. A convolutional neural network to filter artifacts 
in spectroscopic MRI. Mag Res Med 2018;80(5):1765-75.  

41. Lee HH, Kim H. Deep learning-based target metabolite isolation 
and big data-driven measurement uncertainty estimation in 
proton magnetic resonance spectroscopy of the brain. Magn 
Reson Med 2020; 84(4): 1689-706.  

42. Munteanu CR, Fernandez-Lozano C, Abad VM, Fernández SP, 
Álvarez-Linera J, Hernández-Tamames JA, et al. Classification of 
mild cognitive impairment and Alzheimer’s Disease with 
machine-learning techniques using 1H Magnetic Resonance 
Spectroscopy data. Expert Syst Appl 2015; 42(15-16): 6205-14. 

43. Ahmed OB, Fezzani S, Guillevin C, Fezai L, Naudin M, Gianelli B, 
et al. DeepMRS: An end-to-end deep neural network for dementia 
disease detection using MRS data. IEEE 17th international 
symposium on biomedical imaging (ISBI) 2020: 1459-63. 

44. Kherchouche A, Ben-Ahmed O, Guillevin C, Tremblais B, Julian 
A, Fernandez-Maloigne C, et al. Attention-guided neural network 
for early dementia detection using MRS data. Computerized 
Medical Imaging and Graphics 2022; 99:102074. 

45. Wang H, Feng T, Zhao Z, Bai X, Han G, Wang J, et al. 
Classification of Alzheimer’s disease based on deep learning of 
brain structural and metabolic data. Front Aging Neurosci 2022; 
14:927217.  

46. Maul S, Giegling I, Rujescu D. Proton magnetic resonance 
spectroscopy in common dementias-current status and 
perspectives. Front Psychiatr 2020; 11: 769.  

47. Graff-Radford J, Kantarci K. Magnetic resonance spectroscopy in 
Alzheimer’s disease. Neuropsychiatr Dis Treatmen 2013: 687-96.  

48. Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in 
AD. Neurology 2001; 56(5): 592-8.  

 
 

16-Review00262.qxp_3-PRIMARY.qxd  29/01/2024  2:30 PM  Page 109



Systematic / Narrative Review Article

110                                                                                                                                                   Med J Malaysia Vol 79 No 1 January 2024

49. Liu H, Zhang D, Lin H, et al. Meta-analysis of neurochemical 
changes estimated via magnetic resonance spectroscopy in mild 
cognitive impairment and Alzheimer's disease. Front Aging 
Neurosci 2021; 13: 738971.  

 

50. Piersson AD, Mohamad M, Rajab F, Suppiah S. Cerebrospinal 
fluid amyloid beta, tau levels, apolipoprotein, and 1H-MRS 
brain metabolites in Alzheimer's disease: a systematic 
review. Acad Radiol 2021; 28(10): 1447-63.   

16-Review00262.qxp_3-PRIMARY.qxd  29/01/2024  2:30 PM  Page 110




